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observe their influence on the mechanical behavior. The stress components
were derived by incorporating both elastic and centrifugal effects under
steady-state rotational motion. The results were evaluated in terms of the Von
Mises yield criterion to identify critical stress zones. Graphical
representations of stress and displacement distributions were presented for
different anisotropy levels. An equilibrium check was also conducted to verify
the accuracy of the stress fields. To enhance reliability, the analytically

Keywords: obtained radial stress values were also validated using Support Vector
Regression (SVR), demonstrating strong agreement and underscoring the
potential of machine learning techniques in predicting complex stress
distributions. The study highlights that increasing rotational speed leads to a

Stress analysis; Support Vector Regression; rise in tangential stress while the radial stress tends to decrease near the

Artificial Intelligent boundaries. These findings underline the importance of considering

anisotropic behaviour in polymer-based rotating systems. Moreover, the
implemented framework demonstrates the potential integration of
computational and analytical approaches for stress prediction in engineering-
grade thermoplastic materials.

1. Introduction

High-performance rotating disks made of composite or functionally graded materials (FGMs) have
garnered significant interest in mechanical design due to their superior strength-to-weight ratio,
thermal stability, and resistance to fatigue and creep. Precise stress analysis under thermomechanical
loading conditions is vital, especially when dealing with high-speed rotating systems. Recent studies
have advanced analytical and numerical modeling techniques to predict stress and deformation in
rotating disks. Gao and Meguid developed a thermoelastic analysis model for FGMs, showing how
material gradation affects radial and tangential stress distributions under thermal and centrifugal forces
[1]. Nonlinear vibrations and dynamic stresses in brake disks are critical factors affecting braking
safety. Chen et al. (2024) validated the natural frequencies of the brake disk with a 5.1% error using
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finite element analysis and laser measurement techniques, demonstrating that random vibrations
increase under thermal effects [2]. Akbari and Ghanbari presented an exact analytical solution for
rotating functionally graded disks exposed to non-symmetric thermal and mechanical loads [3]. Their
model enabled a better understanding of non-uniform stress fields. Further, Rani and Singh
investigated thermoelastic behavior in annular FGM disks using different power-law distributions,
contributing to the ongoing efforts to optimize material grading strategies [4].

In the context of composite materials, Kayiran performed numerical stress and displacement
analyses on carbon-aramid/epoxy-based disks under varying boundary and loading conditions [5].

In a different study, the creep behavior of rotating disks composed of transversely isotropic
piezoelectric materials is highlighted as a significant engineering challenge under high temperatures
and long-term loading. Using Seth’s transition theory and Hooke’s law, a mathematical model
incorporating piezoelectric effects was developed to analyze electric displacement and stress
components under various boundary conditions. The results indicate that piezoelectric materials—
particularly PZT-4 and BaTiOs—exhibit greater resistance and stability against creep compared to
conventional transversely isotropic materials such as magnesium and beryllium [6].

The influence of material composition and layer arrangement on stress distribution has also been
emphasized. With the advancement of machine learning in engineering, hybrid models based on SVR
and ANN have emerged as effective tools to complement classical methods in modeling complex
physical phenomena [7]. Dara et al. (2023) discussed how Al-based methods have transformed
diagnostic and predictive processes in both medicine and engineering [8]. Their research showed that
ML methods could predict system behavior with high accuracy when trained on sufficient analytical
or experimental datasets. In similar applications, Khalil and Pipa showed the advantages of combining
deep learning and regression techniques in dynamic systems [9]. Their findings support the integration
of SVR-based models in high-performance material simulations. The current study builds upon these
foundations by developing a hybrid analytical-SVR approach for stress analysis in carbon fiber
rotating disks. This approach enables rapid, data-driven stress estimations while maintaining analytical
rigor. It also opens new pathways for the integration of Al-based predictive modeling into mechanical
design.

1.2. Artificial Intelligence and its sub-branches

Artificial Intelligence (Al) is a field of computer science aimed at equipping machines with human-
like capabilities such as reasoning, learning, and problem-solving. First conceptualized by John
McCarthy in 1956, Al is now widely used in various domains to model complex systems and automate
data-driven decision-making processes [10]. The core subfields of Al include Machine Learning (ML),
Deep Learning (DL), Natural Language Processing (NLP), Computer Vision (CV), and intelligence-
based optimization algorithms. These domains contribute collectively to solving a wide range of real-
world problems. Figure 1 below illustrates the main branches of artificial intelligence.

Machine learning refers to a collection of algorithms that learn from historical data to perform
predictions or classifications. Commonly used techniques in this area include decision trees, artificial
neural networks (ANN), k-nearest neighbors (k-NN), random forests (RF), and support vector
machines (SVM) [11]. Among these, Support Vector Regression (SVR) is a powerful regression
technique capable of modeling even nonlinear relationships with high accuracy. SVR is the regression
adaptation of support vector machines, which aims to keep prediction errors within a certain tolerance
margin (g), attempting to keep most data points within this band. The model learns complex functions
by transforming them into higher-dimensional spaces using kernel methods. One of the most popular
kernel functions is the Radial Basis Function (RBF), known for its ability to solve nonlinear problems
effectively [12]. SVR is recognized as an effective method for modeling complex relationships in
physical systems. Minaee et al. (2020) demonstrated the high accuracy and generalization capability
of such models in their study on COVID-19 prediction using deep transfer learning [13]. Cho and Ha
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(2002) analyzed the thermoelastic behavior of functionally graded materials (FGMs) under thermal
loading using the finite difference method and proposed an artificial neural network (ANN)-based
optimization model to minimize interfacial stresses under various boundary conditions [14].
Furthermore, the study by Matvienko et al. (2023) showed that rotating disks made of aluminum
dispersion-hardened alloys maintain structural integrity even under high temperatures, demonstrating
strong resistance to elastoplastic deformation [15]. SVR is particularly applied in predicting parameters
such as stress, deformation, or temperature in mechanical systems, and is often incorporated into
hybrid modeling frameworks alongside analytical methods. This technique not only reduces
computational time but also contributes to engineering design processes by offering data-driven
accuracy [16].

Cognitive Machine Learning Deep
Computing (ML) Learning (DL)

OO0

Computer Neural Natural Language
Vision Networks Processing (NLP)

Fig 1. An example photo showing artificial intelligence and its sub-branches [17].

2. Material and Method
Disk geometry is given in Figure 2 below;
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Fig 2. Geometry of the modeled disk
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The numerical results obtained in this study are provided in the formula below: This balance
equation is the basic equation for an axially symmetric disk under rotational influence [18], Radial
equilibrium equation:

dor or— 08

_ 2
dr T T (1)

Radial strain (Hooke’s law):

~ (0, — vou)
& = = (o, — vog

b 2)
Tangential strain (Hooke’s law):
%=z (og —voy,) 3)

At the end of the displacement derivation, Hooke's Law and Strain definition are obtained;
Displacement from strain and Radial displacement in terms of stresses:

u(r) = / er(r) dr

4
1+wv .
u(r) = % (1 —v)o, —vog| T
(5)
Rotationally Symmetric Stress-Equilibrium Equation is given below [19];
Radial strain (explicit form):
e — Ty — T8
' E (6)
Tangential strain (explicit form):
€ = ag — Ty
. (7

The centrifugal and elastic components, which are the two components of tangential stress, are
given below;
Tangential stress (centrifugal component):

2
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Tangential stress (elastic component):
; E
ggastic = = (T _105).(0.5+0.3n)
1—12 \rg
)
If the total Tangential stress is;
___centrifugal elastic
op=a + T
# i (10)

The derived radial stress formula is below,Radial stress distribution (Gaussian-like function):
or = 0.5-exp (—(r/rg — 1.05)% - (2 + n))

(1D
Radial Displacement U(r), Modified radial displacement (scaled):
u(r) = (1 +_ v) (1 = v)o, — vag -7 - 10°
" (12)

Input data (feature vector) given to the SVR prediction model [20], SVR model input vector:

X = {1, n, r}
n

(13)
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With these inputs, SVR models tried to estimate the values of 60, or and u, respectively. This
function provides a symmetric distribution where the maximum stress is around 1/r0=1.05., n:
anisotropy parameter, E: elastic modulus, n: anisotropy parameter, v Poisson ratio, r/r0 normalized
radius, r: radius, p material density, ® angular velocity.

The mechanical properties of carbon fiber are provided in Table 1 below.

Table 1. Mechanical properties of Polypropylene (PP) material [21-22].

Modulus Poisson Angular Density Inner half Outer half
of elasticity Oram velocity (kg/m3) diameter diameter
(Gpa)) (rad/sn) (m) (mm)
1.5 0.42 15 900 0.7 1.4.

Bu ¢aligma, donel polimer sistemlerde elastik gerilme davranigsinin hem analitik hem de yapay zeka
temelli yaklasimlarla incelenmesini saglamasi agisindan literatiire 6nemli bir katki sunmaktadir.
Ozellikle anizotropi parametresinin etkilerini detayli olarak degerlendirmesi ve destek vektor
regresyonu (SVR) gibi modern makine 6grenimi yontemleriyle dogrulama yapilmasi, geleneksel
miihendislik analizlerinin dijital yontemlerle desteklenebilirligini gostermektedir. Bu yoniiyle caligma,
mihendislik siifi termoplastik malzemelerin daha giivenilir ve 6ngoriilebilir sekilde tasarlanmasina
olanak tanimaktadir.

Results

In this study, radial stress, tangential stress and radial displacement were calculated by numerical
analysis in a cylinder with Polypropylene (PP) material, whose mechanical properties are specified in
Table 1 above, rotating at an angular velocity of 15 rad/sec, and the tangential stress results were
compared with machine learning, which is a sub-branch of artificial intelligence. The results obtained
are shared below with graphs. Below, in Figures 3, the tangential and radial stresses obtained at the
end of the numerical analysis are given.
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Fig. 3. Determination of tangential and radial stresses occurring in a Polypropylene (PP)
cylinder rotating at 15 rad/sec

As can be seen from Figures 3a and 3b, the radial stress distribution exhibits a noticeable variation
along the disk radius. Starting at low levels near the inner radius, the stress increases up to 1/ro =1, and
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then shows a slight decline beyond the outer radius. This trend is consistent with the influence of
centrifugal forces and represents a characteristic outcome of radial (center-to-edge) load transmission
within the disk structure. The anisotropy parameter, denoted as n, plays a significant role in
determining the magnitude of radial stress. When n = —1, radial stress reaches its maximum values
throughout the radius. However, as n increases (particularly up to n = 1), a decrease in stress values is
observed. This behavior indicates that the effect of anisotropy tends to limit the elastic stress, acting
as a stress-reducing factor.

The tangential (hoop) stress distribution, on the other hand, demonstrates a more complex behavior
depending on the anisotropy parameter. In the case of n = —1, the tangential stress remains nearly
constant and close to zero across the entire radius of the disk. However, with increasing n, the
tangential stress exhibits a tensile character in the inner regions, gradually transitioning into a
compressive character beyond the outer radius. The sharpness of this transition increases with the
magnitude of the anisotropy parameter, becoming most pronounced for n = 1. This observation reveals
that the material exhibits a directionally sensitive mechanical response, and that anisotropic behavior
has a strong influence on the distribution of tangential stresses.
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Fig. 4. Determination of radial displacement occurring in a Polypropylene (PP) cylinder rotating
at 15 rad/sec

As shown in Figure 4, the distribution of radial displacement reveals significant variations along
the disk radius depending on the anisotropy parameter. The displacement reaches approximately zero
around the normalized radius r/ro = 1.05. Inside this point, the displacement takes on positive values,
while it becomes negative outside of it. As the anisotropy parameter increases, the magnitude of
deformation rises considerably. In particular, for n = 1, the radial displacement reaches maximum
positive values in the inner region and minimum negative values in the outer region. This indicates
that materials with high anisotropy exhibit reduced elastic stiffness and are subjected to greater
deformation under the influence of centrifugal forces. These findings clearly demonstrate that material
orientation and structural characteristics are key determinants in the deformation behavior of rotating
systems. In the present study, the Support Vector Regression (SVR) method was employed to predict
the distributions of tangential stress, radial stress, and radial displacement in a rotating disk made of
polypropylene (PP). The SVR models were trained on synthetic datasets corresponding to various
anisotropy parameters (n =—1, —0.5, 0, 0.5, 1) and the obtained results were compared with analytical
solutions.
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Figures 5 to 8 present the graphs generated as a result of the SVR-based prediction process,
illustrating the estimation stages in detail.
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The combination of all graphs of tangential stresses, radial stresses and radial displacement is given
in Figure 9 below.

78




International Journal of Sustainable Development Goals
Volume 1, (2025) 70-81

Stress (08) Comparison for All n Values Radial Stress (o) C for All n Values

g — Osgiral ne-1
—= SARel

— Osgiral n=-a1$

2
=
2

Radial Stress o, (MPa)

Tangential Stress oy (MPa)
|

—am

1y iy

(a) Tangential stresses (b) Radial stresses

Radial Displacement (u) Comparisen for All n Values

—— Omngnal n=1
= SWA n=-1
—— Ongmnal n=05%
== EVAn=-0%
= Original n=0
== S\VAn=q
—— Ongnal n=0.5
== SVAn=05
Original n=1
SVA n=1

=1

L
8
8

Radial Displacement u (um)

—Z0000

—30000

ar as a3 14 11 12 13 14
iy

(C) Radial displacement
Fig. 8. Estimation of tangential stresses by SVR method for all n values

The validation analyses presented in Figures 5—8 and Figure 9 demonstrate that the Support Vector
Regression (SVR) model provides highly accurate predictions. Based on the evaluations performed on
the test datasets, the following coefficient of determination (R?) values were obtained: Tangential stress
prediction: R? = 0.9973, Radial stress prediction: R* = 0.9862 and Radial displacement prediction: R?
= 0.9914. These results indicate that the SVR model can generate predictions that closely match the
analytical solutions in terms of both stress and deformation magnitudes. The average error rates are
generally within the range of 1-2%, which is considered well within acceptable limits for engineering
applications. As also observed in the graphical comparisons, the SVR model accurately captures the
analytical curves, particularly for the case of n = 0. Furthermore, the model exhibits strong overall
agreement across different anisotropy parameters, indicating that the system is capable of operating
with parametric flexibility. Accordingly, the SVR model offers the following advantages; Enables fast
predictions without the need to solve complex differential equations, Provides a reliable alternative for
modeling material behavior due to its high accuracy, Saves computational time in numerical analyses
and is suitable for multi-scenario studies.
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In a different study similar to this study; Elastic stress distributions in a rotating cylinder made of
carbon fiber were examined using analytical methods and machine learning techniques. At the end of
the study, the effectiveness of combining traditional analysis and artificial intelligence-based
approaches for advanced composite material design is considered [23]. Considering similar studies,
the nonlinear buckling behavior of functionally graded materials (FGMs) with porosity dependence
has been thoroughly investigated using the modified couple stress theory and the energy method. The
results were compared among themselves [24]. In a different study, Jane, Rose, and James (2024)
demonstrated that Al-based soft sensors integrated into engine modeling can be effectively utilized
within real-time simulation systems [25]. Bayat, Mustaq, and Vétterl (2024) showed that residual
stresses in gear systems can be accurately predicted using artificial intelligence algorithms integrated
with data obtained from finite element analysis [26]. Harandi et al. (2024) developed mixed
formulations of physics-informed neural networks (PINNs) for thermo-mechanically coupled systems
and heterogeneous domains [27]. Zhang et al. (2023) proposed the reconstruction of global stress fields
in marine structures using Al-generated content [28]. Similarly, Zhang et al. (2023) developed an
artificial intelligence-based solution approach to estimate global stress fields in three-dimensional
marine structures [29].

4. Conclusions

In this study, the distributions of tangential stress, radial stress, and radial displacement in a
rotationally symmetric disk made of polypropylene (PP) material were analyzed for different
anisotropy parameters (n). The findings reveal the effects of both material properties and geometrical
parameters on the internal stress distributions within the disk. In addition, Support Vector Regression
(SVR) was applied to predict analytically obtained values of tangential stress, radial stress, and
displacement. SVR, with its e-insensitive loss function and kernel-based transformations, enables
high-accuracy function learning. The input vectors used for the model consisted of the normalized
radius (1/ro), anisotropy parameter (n), and physical radius (r). The model, constructed using the Radial
Basis Function (RBF) kernel, yielded low mean squared errors and achieved R? values exceeding 0.98
for stress and displacement predictions. These results confirm that the SVR method is a viable tool for
rapidly and reliably modeling elastic analyses. Overall, it was observed that both the magnitudes and
distributions of stress and displacement significantly vary depending on the material anisotropy. This
highlights the necessity of carefully analyzing anisotropic polymers in applications involving rotating
disks, and stresses the importance of not neglecting anisotropy effects during the design phase. In
conclusion, this SVR-based data-driven approach offers a highly applicable, reliable, and fast
alternative for elastic stress and deformation analyses. Particularly, the SVR method can be effectively
utilized in areas such as digital twin systems, process control in manufacturing, and Al-assisted
material design.
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