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Foreign Object Debris (FOD) presents a critical threat to aviation safety, with 
the potential to damage aircraft and jeopardize lives. This study explores the 
use of Deep Convolutional Neural Networks (DCNNs) for the precise detection 
and classification of FOD, aiming to transform existing prevention strategies. 
By employing models such as Xception and YOLOv8, the system achieved 
detection accuracies of up to 98% on diverse datasets. The integration of AI-
based approaches significantly enhances operational efficiency, contributing 
directly to the United Nations Sustainable Development Goals (SDGs), 
particularly SDG 9: Industry, Innovation, and Infrastructure: Industry, 
Innovation, and Infrastructure, by promoting smart, safe, and sustainable 
aviation systems. The findings highlight the pivotal role of innovation in 
strengthening critical transportation infrastructure and ensuring resilient 
airport operations aligned with global development goals. 
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1. Introduction 

Foreign Object Debris (FOD) refers to any unwanted materials on airport runways or taxiways 
that could cause harm to aircraft or passengers. Traditional FOD mitigation techniques often rely on 
manual inspections and mechanical equipment, which can be inefficient and error prone. To address 
this, we propose a deep learning-based solution using state-of-the-art detection models like Xception 
and YOLOv8 for real-time, high-accuracy identification of FOD. By embedding intelligent technologies 
into airport safety systems, this research directly supports Sustainable Development Goal 9 (SDG 9): 
Industry, Innovation, and Infrastructure, encouraging the development of resilient and 
technologically advanced aviation infrastructure. The adoption of AI in airport maintenance systems 
not only advances operational safety but also promotes sustainable innovation across the global 
transportation sector. 

All of these systems operate on the basis of employing cameras to obtain the image needed for 
the identification of FOD, with a human expert performing the last verification [1], [2], [3]. These 
automated FOD detection devices are limited to a few airfields worldwide. This sparse deployment 
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has a number of causes, the primary one being the final verification process, which has two unique 
drawbacks. It is first necessary to have someone who is well-trained and resilient, which requires the 
field authority to manage force outflow expenses. The other drawback is that human beings by 
nature tend to make mistakes, regardless of experience or mental toughness. Therefore, automatic 
FOD recognition with advanced and economical computer vision executions is a preferable outcome 
in such a script. Globally, deep literacy procedures are widely utilized in automatic 
recognition/discovery tasks, mostly in the medical field. Where object detection is the most powerful 
thing in computer vision, this field has a huge impact and can be investigated in many methods to 
produce an accurate FOD identification and bracket system. Conversely, material recognition is a very 
recent but rudimentary field in computer vision. 

 

 
 
              
 

Figure 1 Real FOD dataset introduced by Zainab et al. [9]. 
 
Contrary to decades of research on object identification and field of material recognition is 

relatively new, and the application of deep neural networks for automatic point birth has 
demonstrated promise in overcoming the drawbacks of manual point birth. Deep neural network 
methods involve obtaining image features and are desirable because of their advanced perfection 
and rapid recognition. Material recognition is a relatively new way, in comparison to decades of work 
on object identification, and the use of deep neural networks for autonomous point birth has 
demonstrated promise in overcoming the drawbacks of manually performed point birth. Millions of 
images are used to train deep neural networks to achieve reasonable results in material recognition.  

Using laborious and slow computational methods including BRDF [4], SIFT [5], Histograms of 
Gradient [6], interest points [7], and optic inflow [8]. We also proved that material detection can be 
very helpful in FOD detection as we not only just used material recognition but also used material 
detection in our work and results show that material detection is quite helpful in detection of FOD. 
Below, we summarize the major contributions of this work: 

i. A robust feature-based approach is introduced to accurately classify the material 
categories of FOD items across all classes, achieving an average accuracy rate of 
95%, not limited solely to the metal class. 

ii. A detection of FOD using YoloV8 on real FOD dataset introduced by Zainab et al [9]. 
iii. FOD dataset of real FOD items and Chinese dataset is merged into single dataset and 

then performed material recognition on it which produced extraordinary results 
irrespective of the difference in shapes present in images. 

iv. The theoretical framework supporting the refined classification algorithm is 
established to illustrate alignment between theory and the observed outcomes.  

Metal Concrete Plastic 
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v. The proposed method has surpassed the previously used algorithm, achieving much 
better classification accuracy in the field of Foreign Object Debris (FOD) classification 
via image processing with DCNNs and also obtained much better accuracy on 
detection of FOD using YoloV8. 

The remainder of the paper is structured as follows: Section 2 contains the literature survey, while 
Section 3 elaborates on the methodology employed for the research. In Section 4, we provide details 
about the newly merged dataset, and Section 5 give details of experiment and results. Finally, Section 
6 concludes the research. 
 
2. Literature Review  

This section provides an in-depth examination of prior research concerning material recognition, 
Foreign Object Debris detection/recognition, and computer vision utilizing deep neural networks, all 
aimed at tackling the FOD classification challenge addressed in this paper. 

2.1. FOD Classification and Detection  
The literature review provides an in-depth exploration of the current landscape of Foreign Object 

Debris (FOD) detection methodologies, with a particular emphasis on advancements in image 
processing techniques and their application in enhancing aviation safety and operational efficiency. 
Traditional approaches to FOD detection, predominantly reliant on manual inspections or 'FOD 
walks,' are acknowledged for their inherent limitations, including susceptibility to human error, 
inefficiency, and vulnerability to weather-related challenges [10]. 

In response to these challenges, significant strides have been made towards the development 
and deployment of automated FOD detection systems. These systems leverage a diverse range of 
sensing modalities, encompassing radar, optical cameras, and advanced image processing 
techniques, to detect and classify FOD with increased accuracy and efficacy [10]. 

Radar-based detection systems, such as millimeter-wave radar, have long been established as a 
cornerstone of FOD detection, offering unparalleled precision and reliability, particularly in 
identifying larger objects on airport runways [11]. However, the high cost associated with radar 
technology has constrained its widespread adoption, prompting researchers to explore alternative 
sensing modalities, including optical camera systems, which offer a more cost-effective solution for 
enhanced FOD detection. 

The integration of advanced image analysis techniques has significantly enhanced FOD detection 
capabilities, with researchers successfully incorporating sophisticated detection frameworks such as 
Faster R-CNN, Single Shot Detector, and Alex-Net to achieve remarkable improvements in detection 
accuracy [12, 13, 14]. These methods utilize pattern recognition and feature extraction for 
classification, with notable enhancements observed in model architecture such as DenseNet and 
VGG-16. 

Moreover, the introduction of novel object detection frameworks such as DeepLabv3+ and 
YOLOv5 has further augmented FOD detection capabilities [16]. These frameworks incorporate 
advanced techniques like spatial pyramid pooling and attention mechanisms to optimize feature 
extraction and classification performance, resulting in heightened accuracy and speed. 

Efforts to integrate multiple image processing techniques and curate comprehensive datasets 
have also been pivotal in advancing FOD detection accuracy [9]. Techniques such as combining 
multiple detection methods and data augmentation have proven instrumental in mitigating 
challenges associated with limited data availability and class imbalance, culminating in the 
development of more robust and generalizable detection systems [9]. 
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In addition to radar and optical camera systems, hybrid approaches that combine radar with 
infrared sensors or electro-optical imagery have shown promising results in improving detection 
capabilities across diverse environmental conditions [16]. Commercially available FOD detection 
systems, including the Tarsier millimeter-wave radar and Hitachi's radar over fiber system, have 
garnered regulatory approval from authorities such as the Federal Aviation Administration (FAA), 
underscoring their efficacy in real-world applications. 

Furthermore, the literature review underscores the significance of preprocessing techniques in 
optimizing image data for FOD detection. Grayscale conversion, histogram equalization, and 
Gaussian filtering are among the common preprocessing methods employed to enhance image 
quality and feature visibility, while feature extraction techniques such as Linear Discriminant Analysis 
and Gray-Level Co-occurrence Matrix contribute to precise classification. Statistical classification 
methods, including K-Nearest Neighbors and Random Forest, further improve detection accuracy, 
offering a versatile and effective framework for FOD detection tasks [17]. 

Moreover, the transformative potential of automated imaging systems in streamlining FOD 
detection and removal processes is highlighted, with the ultimate goal of minimizing disruption to 
airport operations and mitigating the risk of aircraft damage. However, significant challenges, 
including safe integration with existing air traffic, weather-related disruptions, and computational 
complexity, underscore the need for ongoing research and development in this domain. 

2.2. Related Dataset 
The available datasets in this context are CUReT [18], the KTH- TIPS [19] and FMD [20], and the 

raw items in environment Database MINC are the most common datasets extensively used for 
detection. For 61 texture images, the CUReT data accommodates illuminations and angles on a scale 
of 205 types. KTH- TIPS has a total of 11 material orders, with four samples for each order. In order 
to increase diversity, every sample is photographed in vibrant settings. The Accoutrements dataset 
have 10 material orders with 100 images of each order. About 3 million image patches of 23 material 
orders that have been adapted from ImageNet are available in MINC. 

Even though all of these datasets have a great deal of diversity, they are inappropriate for 
identifying FOD waste because they were primarily collected indoors and do not correspond to the 
lighting or conditions associated with FOD waste emergence. The main challenge in finding delicate 
FOD is the absence of a suitable dataset that reflects real lighting conditions and various levels of 
rainfall. Taking this into account, Xu et al [12] introduced the FOD dataset having several classes. 
Although it is a huge contribution by them as availability of FOD datasets are very limited, still this 
data had some downsides like absence of real background, Placement of FOD at the center of image 
and utmost of the images comprise bulky objects such as bolts, wrenches, plastic bottles etc. Keeping 
this thing in mind S.M. Zainab [9] made another dataset they called real FOD particle (set up by safety 
labor force on a functional runway) in three basic classes were made in this dataset. The data consists 
of 2010 train, 336 validation, and 126 test images. Also, almost equal numbers of photos were shot 
for each script in the morning, evening and nighttime. 

In response to the limitations identified in existing FOD datasets, particularly regarding unrealistic 
backgrounds, centralized placement of FOD, and predominance of bulky objects, a novel approach is 
devised. By amalgamating the datasets created by Xu et al. [12] and Zainab et al. [9], which 
respectively provided comprehensive class coverage and real-world FOD instances, a more diverse 
and representative dataset is established. This combined dataset addressed the shortcomings of 
individual datasets, offering a broader range of FOD scenarios captured across different times of day. 
Leveraging this enhanced dataset, an Xception model is trained, resulting in notably improved 
classification performance. This approach not only rectified the deficiencies of existing datasets but 
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also demonstrated the efficacy of integrating diverse data sources to enhance model accuracy and 
robustness. 

 
      

3. The Proposed Methodology  
This section elaborates on how earlier studies implemented FOD material classification 

techniques and methods for recognition. Furthermore, it explains the proposed methodology 
concerning its development, implementation, and improvement in accuracy. It also provides insights 
into the composition of the newly merged dataset and details the process of object detection for 
FOD using advanced image processing techniques with YOLOv8. 

3.1. Implementation of Inception V3 
Zainab et al. [9] employed transfer learning, utilizing the Inception V3 pre-trained model, which 

underwent complete fine-tuning on the FOD dataset. Additionally, they utilized the AlexNet pre-
trained on a Chinese dataset. The resulting accuracies were quite low on Chinese dataset but good 
enough on real FOD dataset having Focus on metal. In comparison to that our aim is to get better 
accuracy not just for metal but also for other classes as well and we succeed in that. The methodology 
adopted by Zainab et al. [9] is compared with the approach employed in this study as outlined below: 

 

• In their study, Zainab et al. [9] opted for Inception V3 as their preferred neural network 
for FOD recognition, particularly focusing on material classification. While having 
focus on metal as they thought that metal is one that presents the most in FOD. 
Considering the complexity involved in material recognition, it is acknowledged that 
deeper neural networks tend to yield better recognition accuracy [18], assuming that 
factors such as appropriate dataset selection, training methodologies, and techniques 
to mitigate overfitting are properly addressed. In this paper we have used the Xception 
Model. In this study, Xception architecture is exclusively employed as the primary 
deep learning model for material recognition tasks. While previous research 
emphasized the effectiveness of models like InceptionV3 and ResNet, our 
investigation focused solely on Xception architecture. Through comprehensive 
experiments and implementation our study demonstrated the superior performance 
of the Xception model on both existing and newly developed FOD datasets. 

• Zainab et al. [9] utilized pre-trained models, specifically AlexNet and Inception V3. 
They trained only the fully connected layers of these networks on both the Chinese 
dataset and the newly developed dataset in this study. Transfer learning strategy was 
employed in conjunction with training the last few layers, allowing the network to 
acquire complex features. On the other hand, in this research, we used Transfer 
learning and used pre trained Xception Model which have been trained on Chinese, 
newly developed dataset of real FOD by Zainab et al [9] and then at the end we merged 
both these datasets and again trained Xception model on it and the outcome is quite 
remarkable. 

• The dataset presented by Xu et al. [12] includes training images featuring generic 
items within the irrelevant material category. In contrast, the dataset compiled by 
Zainab et al. [9] exclusively comprises FOD items retrieved from actual airfield runways 
and taxiways, ensuring a balanced representation across various times of the day to 
account for lighting variations. These items, primarily discovered by flight safety 
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personnel, predominantly consist of small objects such as nuts, bolts, screws etc. 
Furthermore, a novel dataset is formed by merging these two datasets to augment 
diversity and enhance outcomes. 

 
3.2  Proposed Model 

The fundamental principle underlying the concept of algorithm development is to leverage pre-
trained networks trained on ImageNet, given their exceptional performance in object recognition 
tasks and also performed very well in the                         work of Zainab et al. [9] as well as Xu et al. 
[12] as they also used pre trained networks. Furthermore, these algorithms have been fine-tuned for 
recognition tasks, thus demonstrating improved performance when applied to datasets where FOD 
items are centrally positioned in the image with a runway background. The effectiveness of the 
networks is underscored by the outcomes, indicating enhanced performance with ImageNet, 
recognized as the largest dataset available for feature learning, thereby facilitating network with 
better training.  

The Xception model, pre-trained on ImageNet, exhibits superior prediction accuracy compared 
to the results reported by Zainab et al. [9] in their study. Pre-processing techniques are employed to 
align input images with the size and format requirements of the respective model. In this study, three 
distinct optimizers, namely stochastic gradient descent, Adam, and RMS Prop, were utilized. It is 
observed that on the newly developed dataset developed by Zainab et al [9] and on the newly merged 
dataset, the Adam optimizer performed best for Xception model. The results are to be discussed in 
detail in later sections. Figure 2 shows the structure of the model. 

Figure 2. Proposed model for FOD classification. 
3.3 Improved Recognition Accuracy  

To enhance the overall test accuracy of the algorithm, Zainab et al. [9] primarily concentrates on 
augmenting the accuracy of metal recognition. Given the dataset's scale, comprising a few thousand 
training images, encountering the issue of overfitting was anticipated. Our focus is to enhance the 
accuracy not only on metal class but also on other classes as well, the following strategies were 
implemented, yielding significant effectiveness. 
3.4 Selection of D-CNNs 

Considering the prior research conducted by Zainab et al. [9], the Xception model has been 
chosen as the primary deep convolutional neural network (D-CNN) to enhance recognition accuracy 
across all classes. Among numerous available D-CNNs, Xception has demonstrated superior 
performance in terms of accuracy. Leveraging the pre-trained Xception model available within the 
Keras API applications, it was implemented using Keras. Comparative analysis reveals that the results 
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obtained with Xception surpassed those of earlier network models. Even when combining the two 
datasets and training the Xception model on it the results are exceptionally good. 

 
 

3.5 Selection of Pre-trained Weights 
Leveraging pre-existing models is essential in image processing due to the challenges associated 

with collecting large datasets and the computational demands of developing models from scratch. 
Utilizing pre-trained models helps alleviate these burdens and facilitates faster results with higher 
accuracy. However, selecting a suitable model tailored to the task at hand is crucial. For instance, 
employing a model trained for image classification is essential for tasks related to visual data rather 
than one designed for text processing. ImageNet, renowned for its vast category coverage and 
optimization for image analysis, holds an advantage over datasets like MINC. While MINC may be 
compatible, ImageNet's extensive category range enables better generalization of features, 
particularly in tasks like FOD classification within material categories. Consequently, employing 
models trained on ImageNet yields superior performance compared to previous studies [12]. This 
approach ensures that deep feature extraction is optimized, allowing models to adapt effectively to 
specific datasets in image-based classification tasks. 
3.6 Selection of Optimizer 

In previous studies by Xu et al. [12], stochastic gradient descent was employed as the optimizer; 
nevertheless, Adaptive Moment Estimation (Adam) optimizer demonstrated superior performance. 
Similarly, in the study conducted by Zainab et al. [9], Adam optimizers were utilized. Hence, 
considering these findings, Adam optimizers were selected for training all models in this paper. The 
outcomes confirmed that Adam consistently achieved optimal convergence and yielded the highest 
accuracies across all models.  
3.7  Methods to resolve Overfitting 

Given the constrained size of the FOD dataset utilized in this study, the risk of limited adaptability 
remains a significant concern. This issue arises when a system becomes too specialized to the 
available data, leading to diminished performance when applied to new or varying conditions. This 
phenomenon can significantly impact the system's ability to function effectively beyond the initial 
dataset, reducing its overall reliability in real-world applications. The following techniques were used 
to improve adaptability and maintain accuracy across different scenarios: 

1. Reduced Complexity 
2. Early Stopping  
3. Data Augmentation 
4. Dropout 

4. Newly Merged Dataset 
An important milestone in our research was achieved by merging two distinct datasets—the 

Chinese FOD dataset [12] and the real FOD dataset [9]—to create a comprehensive and enriched 
dataset for analysis. This newly combined dataset was utilized to enhance classification accuracy, 
yielding exceptional results that highlight its robust ability to handle diverse data. The fusion of these 
datasets significantly expanded the diversity and volume of the data, enabling more effective pattern 
recognition and feature extraction from varied sources. This accomplishment underscores the 
improved adaptability of the approach, showcasing its capability to deliver high performance across 
diverse and complex data. 

The merged dataset contains a balanced distribution of images across key FOD categories, 
including metal, concrete, and plastic, as detailed in Table 1. With a total of 5,465 images allocated 
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for training, validation, and testing, this dataset provides a robust platform for advancing FOD 
classification and detection research. The training set consists of 3,812 images, while the validation 
and test sets contain 1,123 and 530 images, respectively. This meticulous allocation ensures that the 
dataset supports comprehensive model evaluation and fine-tuning. 

The successful integration of these datasets, coupled with the outstanding results achieved by 
the Xception model, reinforces the significance of this approach. By leveraging the strengths of both 
datasets, this research lays a strong foundation for future advancements in FOD detection. The 
merged dataset not only enhances model generalization capabilities but also serves as a valuable 
resource for developing and benchmarking innovative machine-learning techniques in aviation 
safety. 

TABLE 1. Newly merged FOD dataset details. 

Category No. of Images 

Training Validation Test 

Metal 1193 332 188 

Concrete 1300 396 171 

Plastic 1320 395 171 

Total 3812 1123 530 

 
5. Experiments and results 
This section outlines the outcomes derived from the predictions of the FOD classification 

algorithm, which are based on the methodologies delineated in Section 3. 
5.1 Xception Algorithm 

The Xception algorithm is implemented in three distinct approaches. Initially, the Xception model 
pre-trained on ImageNet undergoes fine-tuning using the Chinese FOD dataset. Subsequently, the 
same Xception model pre-trained on ImageNet is fine-tuned utilizing the newly developed FOD 
dataset introduced by Zainab et al. [9]. After that checking the diversity Xception pre-trained on 
ImageNet is fine-tuned on newly merged dataset. 
5.2 Xception Algorithm on Chinese Dataset 

We trained our model on a Chinese dataset and this dataset is also used by SM. Zainab et al [9] 
in their research as well. Our model's performance on the Chinese dataset surpassed the outcomes 
reported by SM. Zainab et al [9] and also by Xu et al [12]. This achievement underscores the efficiency 
of our approach, showcasing superior results in comparison to prior works. Table 2 gives us detailed 
comparative analysis. 

Table 2. Results comparisons on Chinese dataset [12] 

 
Figure 3 illustrates the F1-score, a metric that balances precision and recall, providing a 

comprehensive assessment of classification accuracy across all categories. Moreover, the individual 
graphs plotted for each class visually depict the patterns in precision, recall, and F1-score, enhancing 

MODEL Accuracy 

Proposed Xception model 98% 

AlexNet by Zainab et al [9] 81% 

AlexNet by Xu et al [12] 67% 
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the understanding of the system’s effectiveness across diverse categories. These findings underscore 
the dependability and efficiency of the proposed classification approach in accurately identifying 
metal, concrete, and plastic objects within the Chinese dataset, thereby establishing a strong 
foundation for its potential application in various real-world scenarios. 

 
Figure 3. Graph showing, F1score, precision, recall on Chinese dataset [12]. 

 
The confusion matrix reflects on the overall performance of the model across different classes in 

Table 3. In the "concrete" class, out of 110 instances, 108 were accurately classified, while 2 were 
misclassified as "plastic," resulting in a precision of about 98%. For the "metal" class, 110 instances 
were correctly identified, with only 1 misclassification as "plastic," achieving a precision of 
approximately 99%. Similarly, in the "plastic" class, 123 instances were correctly classified, with 1 
misclassified as "metal," resulting in a precision of around 99%. The average accuracy across all 
classes stands at approximately 98%. 

 
TABLE 3.confusion matrix on Chinese dataset [12]. 

 
 
5.3 Xception Algorithm on real FOD Dataset 

We trained our model on a real FOD dataset. This dataset is introduced by SM. Zainab et al [9] in 
their research as well. Our reported results on the new dataset surpassed the outcomes reported by 
SM. Zainab et al [9]. The details of the results are listed below in Table 4. 

TABLE 4. Comparisons of Results on real FOD dataset [9]. 

True Label \ Predicted Label Concrete Meta
l 

Plastic 

Concrete 108 0 2 

Metal 0 110 1 

Plastic 0 1 123 

Model/Method Accuracy 
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Among the classification approaches analyzed, the Xception framework emerged as the most 

effective, achieving an impressive accuracy of 96%. Its strong results highlight the efficiency of its 
depth-wise separable layers, which excel at capturing intricate patterns within the dataset. Following 
closely behind, Inception V3 attained a commendable accuracy of 92%, utilizing its advanced feature 
extraction mechanisms. Despite its deeper structure designed to handle complex classification tasks, 
ResNet50 achieved an accuracy of 87%, slightly trailing Xception and Inception V3. This suggests that 
the dataset may not fully benefit from ResNet50's depth compared to the more optimized feature 
extraction techniques of Xception and Inception V3. Meanwhile, AlexNet, while innovative at its 
introduction, demonstrated the lowest accuracy at 82%. Its shallower structure relative to the other 
approaches likely limited its ability to capture detailed patterns within the dataset, resulting in 
comparatively lower accuracy.  

In summary, the Xception model's exceptional accuracy highlights its effectiveness in capturing 
the complexities of the dataset, positioning it as the preferred choice among the models examined, 
followed closely by Inception V3, while ResNet50 and AlexNet offer competitive but comparatively 
lower performance. 

 

 
Figure 4. Graph showing, F1score, precision, recall on real FOD dataset [9]. 

The average precision, recall, and F1-score across all classes reached an impressive 96%. This 
demonstrates the system's strength in accurately categorizing objects into their appropriate classes. 
Precision evaluates classification accuracy in identifying relevant instances within a class, while recall 
assesses its ability to capture all pertinent instances. The F1 score, which combines precision and 
recall, provides an overall measure of classification effectiveness. Additionally, the graphs plotted for 
each class visually depict the trends in all three metrics, offering a comprehensive visual overview of 
classification accuracy across various categories. These results underscore the reliability and 
efficiency of the proposed classification approach in accurately identifying metal, concrete, and 
plastic objects, laying a strong foundation for their practical application in real-world scenarios. 

Proposed Xception model 96 

Inception by Zainab et al [9] 92 
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TABLE 5. Confusion matrix on real FOD dataset [9]. 

 
 
 
 

The provided confusion matrix reveals the classification performance of the model across three 
classes: "concrete," "metal," and "plastic" in Table 5.  In the "concrete" class, the model accurately 
classified 40 out of 40 instances, resulting in a precision of 100%. For the "metal" class, 39 instances 
were correctly identified, with one misclassification as "plastic," yielding a precision of approximately 
97.50%. In the "plastic" class, 42 instances were accurately classified, with four misclassified as 
"metal," achieving a precision of around 91.30%. The average accuracy across all classes stands at 
approximately 96.96%. 
5.4 Xception Algorithm on Newly Merged Dataset  

In the subsequent phases of our research, a notable advancement is achieved by merging two 
distinct datasets, followed by training the combined dataset using the Xception model. The outcome 
is highly promising, underscoring the model's robust ability to perform well on generalized data. This 
accomplishment signifies the model's adaptability to diverse datasets, affirming its capability to 
effectively learn and extract meaningful features across varied sources. The successful fusion of 
datasets, coupled with the stellar results attained, further reinforces the versatility and 
generalization of the Xception model in our research context. 

TABLE 6. Confusion Matrix on Newly merged dataset 

Predicted Label 
 

Concrete Metal Plastic 

Concrete 184 3 1 

Metal 4 158 9 

Plastic 2 9 160 

 
The confusion matrix provides a detailed overview of the models’ performance in Table 6. Across 

all the classes out of a total of 530 instances, 502 were correctly classified, resulting in an overall 
accuracy of 94.72%. Specifically, the model accurately classified 184 instances of concrete, with only 
4 instances misclassified as metal and 2 as plastic. For the metal class, 158 instances were correctly 
identified, with 3 misclassifications as concrete and 9 as plastic. Similarly, in the plastic class, 160 
instances were correctly classified, with 1 misclassification as concrete and 9 as metal. Overall, the 
model demonstrates a strong ability to differentiate between the three classes, with the majority of 
instances correctly classified. 

Predicted Label 
 

Concrete Metal Plastic 

Concrete 40 0 0 

Metal 1 39 0 

Plastic 0 4 42 
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Figure 5. Graph showing, F1score, precision, recall on real Newly Merged dataset. 

The average precision, recall, and F1-score across all classes reached an impressive 94%. This 
highlights the robustness of the model in accurately classifying objects into their respective 
categories, indicating its effectiveness in handling the intricacies of the merged dataset. The precision 
metric evaluates the model's accuracy in correctly identifying pertinent instances within individual 
classes, whereas recall assesses its capability to capture all relevant instances. The F1-score, which 
harmonizes precision and recall, offers a holistic assessment of the model's overall performance in 
classifying objects across all categories. Furthermore, the graphs plotted for each class visually depict 
the patterns in precision, recall, and F1-score, thereby strengthening the depiction of the model's 
superior performance across diverse categories. These results underscore the reliability and 
effectiveness of the proposed classification model in accurately identifying metal, concrete, and 
plastic objects within the merged dataset, laying a solid foundation for its practical application in 
various real-world scenarios. 

TABLE 7. Results on Newly merged dataset 

Model F1Score Recall Precision 

The proposed 
Xception model 

95 94 94 

 
5.5 Yolo V8 on real FOD dataset 

YOLOv8, the eighth iteration of the YOLO (You Only Look Once) algorithm presented by 
Ultralytics, introduces a significant leap in capabilities compared to its predecessors. Unlike its 
predecessors, YOLOv8 provides versatile support for various computer vision tasks, encompassing 
object detection, image classification, instance segmentation, and pose estimation. This versatility is 
further enhanced by the availability of five different model variants, ranging from nano to extra-large, 
catering to the different computational resources and accuracy requirements. A key advantage of 
YOLOv8 is its inclusion in the Ultralytics package, which also supports YOLOv3 and v5; however, 
YOLOv8 stands out as the sole version capable of handling all four computer vision tasks. 

The architecture of YOLOv8 comprises a backbone and head, with the backbone utilizing cross-
stage partial (CSP) blocks reminiscent of YOLOv5. These CSP blocks offer several advantages, 
including strengthening the learning capability of lightweight models, removing computational 
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bottlenecks for faster inference, and reducing RAM utilization, enabling deployment on edge devices 
like Nvidia Jetson. YOLOv8, along with its predecessor YOLOv5, has gained popularity for its accuracy 
and real-time performance in object detection tasks, largely attributed to the efficiency of the CSP 
backbone. Comparisons between YOLOv8 and YOLOv5 repositories likely highlight differences in 
features, performance, and supported tasks, further underlining the advancements brought forth by 
YOLOv8 in the field of computer vision. 

 
Figure 6. Graph showing, Confusion Matrix on real FOD dataset by Zainab et al [9] 

 
Figure 6. Shows YOLO v8 results on my dataset featuring three classes’ metal, concrete, and 

plastic. We obtained precision-recall curves that provide valuable insights into the model's 
performance. The curves showcase precision on the y-axis and recall on the x-axis, with the plotted 
line starting from a precision of 1.0 and gradually declining to approximately 0.98, covering a vast 
area under the curve. 

This decline in precision with increasing recall indicates the model's ability to effectively balance 
precision and recall across various thresholds. Impressively, the achieved accuracies for metal, 
concrete, and plastic classes stand at 0.99, 0.98, and 0.98, respectively, underscoring the model's 
high accuracy in classifying objects within each category. Additionally, "mAP at 0.5" is included in the 
graph, denoting the mean average precision (mAP) at an intersection over union (IoU) threshold of 
0.5. This metric serves as a comprehensive measure of the model's performance across all classes, 
further validating its effectiveness in accurately detecting and localizing objects. Overall, the 
precision-recall curves and associated accuracy metrics offer valuable insights into the robustness 
and reliability of the YOLO v8 model in accurately identifying metal, concrete, and plastic objects in 
the dataset. Figure 7, 8 shows the results and precision recall curve on. 
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Figure 7. Shows results of Yolo v8 on real FOD dataset by Zainab et al [9] 

 

 
Figure 8 . Graph showing Precision Recall on real FOD dataset [9]. 

6 Conclusion 
This research highlights the remarkable potential of using advanced image analysis techniques 

for Foreign Object Debris (FOD) detection and classification, paving the way for safer and more 
efficient aviation operations. By utilizing pre-trained classification methods and an enriched, merged 
dataset, we demonstrated that achieving consistently high accuracy across diverse FOD classes is 
possible. The merged dataset, with its larger and more varied collection of images, proved to be a 
game-changer, helping us achieve results that outperform previous benchmarks. Among all the 
classification techniques tested, the Xception framework stood out, delivering the highest accuracy 
across all categories. Additionally, YOLOv8 showed exceptional performance in detecting even small 
objects on real FOD data, addressing one of the critical challenges in debris detection. 

Looking ahead, there are exciting opportunities to build on this work. One promising direction is 
to apply enhanced object detection techniques to the merged dataset, which, with its larger pool of 
instances, could further improve classification, accuracy and reliability. Another important step is 
creating a new dataset featuring multiple objects in a single image, mimicking real-world scenarios 
where airport runways often have multiple types of debris present simultaneously. This would allow 
detection systems to tackle more complex classification challenges and bring us closer to practical, 
on-the-ground implementations. 

By addressing these future directions, we can unlock even greater potential in FOD detection 
systems, making aviation safer and more reliable. This research is a step forward in leveraging the 
power of automated detection technologies to address real-world challenges, and the possibilities 
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for further innovation are limitless. Moreover, we will develop some more combined deep learning 
models for multicriteria decision making for fuzzy logic and stress analysis by using [21-27].   
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