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Cleaner Production (CP) is widely recognized as a key strategy for balancing 
environmental protection with economic development in industrial sectors, 
including gold mining. In this study, we propose a novel multi-attribute group 
decision-making (MAGDM) model based on Complex 𝑝, 𝑞-Rung Orthopair 
Fuzzy Sets (Cp,զ-ℛՕFՏs) and Hamacher Aggregation Operators (HAOs) to 
evaluate sustainability-driven decisions in gold mining operations. The model 
captures the complex and uncertain nature of expert assessments using 
complex-valued membership structures and flexible aggregation processes. 
To demonstrate the model’s practical utility, a real-world-inspired case study 
involving the evaluation of five cleaner production alternatives in a gold 
mining scenario is conducted. These alternatives are assessed based on 
environmental, economic, and technical criteria. The proposed framework 
effectively aggregates expert opinions under uncertainty, and a detailed 
comparative and sensitivity analysis validates the robustness and precision of 
the method. Results show that the model supports informed and sustainable 
decision-making in mining practices, offering a promising tool for industries 
seeking to implement CP under uncertain and complex conditions. 
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1. Introduction 
 

Real-world decision-making problems often involve multiple conflicting criteria and require 
inputs from multiple experts. This framework is referred to as Multi-Attribute Group Decision Making 
(MAGDM) and is widely applied in fields such as engineering, medical diagnostics, financial analysis, 
and artificial intelligence. MAGDM techniques aim to evaluate and rank various alternatives based 
on multiple attributes, despite uncertainty, vagueness, or imprecise data. The engineering, financial 
risk management, medical diagnosis, artificial intelligence, and other related fields frequently 
struggle with making decisions based on insufficient information. Fuzzy Sets (FSs), which Zadeh 
(1965) [1] introduced in connection with uncertainty in decision-making situations, use a 
membership function with values between 0 and 1 to resolve uncertainty. Intuitionistic Fuzzy Sets 
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(IFS), developed by Atanassov in the year 1986 [2], set membership and non-membership degrees 
based on the restriction that their sum cannot exceed one because FSs cannot resolve any kind of 
hesitancy or partial information. Even though IFSs have improved their method of thinking about FSs 
[3], there will still be some boundaries of greater vagueness that cannot be resolved.  

Yager (2013) [4] suggested Pythagorean FS (PFS) as a solution to this problem. These sets offer a 
more flexible structure for decision-making [5] by ensuring that the sum of squares of membership 
and non-membership degrees stays inside [0,1]. Using a q-power sum constraint, Yager (2016) [6] 
further developed this concept by introducing q-Rung orthopair Fuzzy Sets (q-ℛՕFՏs), which provide 
more flexibility in representing uncertainty and imprecise information. To increase the զ-ℛՕFՏ's 
applicability in Multi-Attribute Group Decision-Making (MAGDM) issues, two independent power 
parameters (p and զ) were added to create the p, զ-Rung orthopair Fuzzy Set (p,զ-ℛՕFՏ) ([7],[8]), 
which was recently introduced. 

Nevertheless, there are some inherent characteristics of real-life systems that cannot be handled 
by the basic fuzzy models, like periodicity, oscillatory behavior, or phase-based uncertainty. To 
overcome this limitation, Ramot et al. (2002) [9] presented CFSs to extend the FSs by including the 
phase aspect of uncertainty that includes real and imaginary functions for the membership degrees. 
After the generalization of PFSs to complex-valued membership functions termed as CPFSs. The new 
set called CIFSs was introduced by Alkouri et al. (2012) [10] to include the intuitionistic vagueness.  

To enrich these models, more fuzziness was added into the models while maintaining phase-
related ambiguity with the help of the development of complex զ-rung orthopair Fuzzy Sets (Cզ-
ℛՕFՏs). The reason for proposing the Cp,զ-rung orthopair Fuzzy Sets was because these models are 
incapable of dealing with orthopair constraints of higher order real and imaginary components 
simultaneously. This new addition helps in broadening the capability of the model in handling 
uncertainties in MAGDM situations by adding p, q-power constraints to the real and imaginary parts 
of the MFs. 

In the case of IFSs, measures of similarity have been defined to compare the options and enhance 
the decision-making (Dengfeng et al., 2002; Ye, 2011) [11]. To enhance information fusion, many 
aggregation operators have also been developed; for instance, the Einstein Choquet integral 
operator (Xu et al., 2014) [12]. Moreover, several MCDM approaches have been employed in 
intuitionistic fuzzy contexts like GRA-based selection models (Zhang et al. 2011) [13], TOPSIS based 
decision models (Boran et al., 2009) [14], and decision frameworks based on ELECTRE (Devi et al.  
2013) [15]. However, the ability of high-order fuzzy models to deal with phase-related uncertainty is 
not fully realized by these current methods, which are developed under the real-valued fuzzy context. 

Despite these advancements, classical fuzzy models lack the capacity to represent phase-based 
or periodic uncertainty. To address this, Complex Fuzzy Sets (CFSs) [9] introduced complex-valued 
membership functions. This led to subsequent developments such as Complex Pythagorean Fuzzy 
Sets (CPFSs) and Complex Intuitionistic Fuzzy Sets (CIFSs) [10]. The latest evolution Complex p,q-Rung 
Orthopair Fuzzy Sets (Cp,q-ROFSs) adds real and imaginary components governed by p- and q-power 
constraints, making them particularly suitable for MAGDM problems with rich and uncertain 
information.   

To enhance the usability of the existing fuzzy models in MAGDM contexts, the overall purpose of 
this research is to develop Cp,զ-ℛՕFՏs, which extend complicated fuzzy forms. Aggregate operators 
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are also required to consolidate multiple criteria, but non-linear interactions are often neglected by 
arithmetic and geometric mean methods. Therefore, this paper introduces HAOs for Cp,զ-ℛՕFՏs to 
increase the flexibility in dealing with complex decision-making problems based on Hamacher t-norm 
and t-conorm functions [16]. They are used in decision-making, especially in scenarios that are 
ambiguous. The presented approach is especially useful when one must solve MAGDM problems, 
which occur when decision-makers are to choose between multiple options based on multiple 
criteria. Figure 1 below summarizes the evolution from classical FSs to the advanced Cp,q-ROFSs 
framework: 

 

Figure 1: Cp,q-ROFSs framework:  

In recent years, the development of advanced decision-making models under uncertainty has gained 
momentum, particularly through the integration of fuzzy, neutrosophic, and probabilistic hesitant 
frameworks. For instance, an optimization strategy under a probabilistic neutrosophic hesitant fuzzy 
rough environment has been proposed to enhance confidence-level-based MADM decisions, 
enabling robust handling of vagueness and reliability [21]. Similarly, the neutrosophic Z-rough set 
approach combined with sine trigonometric aggregation operators has proven effective for 
evaluating sustainable industrial alternatives [22], addressing multidimensional uncertainty through 
refined set-theoretic operations. 

Moreover, recent studies have introduced single-valued neutrosophic probabilistic hesitant fuzzy 
rough aggregation models for complex real-world applications such as smart city planning, further 
illustrating the importance of hybrid decision models in uncertain and dynamic environments [23]. 
These innovative models demonstrate the utility of combining multiple fuzzy logic extensions to 
better reflect human reasoning under incomplete, inconsistent, and hesitant information. 
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Inspired by these advancements, our study proposes a Complex 𝑝, 𝑞 -Rung Orthopair Fuzzy Hamacher 
Aggregation Model for MAGDM, tailored for sustainable gold mining evaluation. This framework 
distinguishes itself by capturing both the interactive behavior of criteria through Hamacher 
operations and the complex nature of expert judgments, extending beyond traditional intuitionistic 
and neutrosophic systems. 

The introduction of Cp,զ-ℛՕFՏs, which extend complex-valued fuzzy frameworks by adding p,զ-
power constraints on both real and imaginary components, is one of the study's main achievements. 
It also creates Hamacher Aggregation Operators (HAOs) for Cp,զ-ℛՕFՏs, which allow for more 
sophisticated aggregation methods and better decision-making. Additionally, this paper applies the 
suggested method to a real-world MAGDM problem assessing the effectiveness of exploration and 
recovery robots and performs comparison analysis to show the superiority of Cp,զ-ℛՕFՏ-based 
aggregation methods over existing models. In light of this development, the present study proposes 
novel Hamacher Aggregation Operators (HAOs) for Cp,q-ROFSs to effectively aggregate information 
in complex MAGDM scenarios. HAOs based on t-norms and t-conorms offer more realistic 
aggregation behavior than conventional arithmetic means, especially in uncertain environments. 

Recent years have seen a surge in advanced fuzzy decision-making techniques aimed at managing 
uncertainty in group decision contexts. One notable stream of work has focused on the Best-Worst 
Method (BWM), especially in fuzzy environments. For instance, Rashid et al. (2023) conducted a 
comprehensive review of fuzzy BWM models with a focus on human-centric decision-making, 
emphasizing their applicability in group evaluation frameworks [24]. Further, Pythagorean Fuzzy Sets 
(PFSs) have emerged as a powerful extension of Intuitionistic Fuzzy Sets (IFSs), enabling greater 
flexibility in modeling uncertain information. A detailed survey by Garg et al. (2021) outlines the 
theoretical advancements and practical applications of PFSs from 2013 to 2020 [25], indicating their 
growing relevance in sustainability and risk-based assessments. Similarly, decision-making models 
that extend the Analytic Hierarchy Process (AHP) into fuzzy environments have received extensive 
attention. Stanujkic et al. (2023) reviewed fuzzy extensions of AHP, providing a clear overview of how 
fuzzy logic enhances traditional hierarchical structuring in MADM problems [26]. In addition to 
survey-based research, practical applications of hybrid fuzzy methods continue to expand. For 
example, Karabasevic et al. (2019) proposed a hybrid fuzzy AHP–TOPSIS model for warehouse 
location selection, showcasing how multi-operator frameworks can be tailored for real-world logistics 
decisions [27]. Moreover, the evolution of generalized fuzzy numbers is another notable area. 
Mardani et al. (2020) conducted a systematic review on generalized fuzzy numbers, mapping their 
theoretical development and widespread applications across disciplines [28]. These insights align well 
with our aim to extend decision-making theory using complex-valued fuzzy structures like Cp,զ-
ℛՕFՏs. In this context, our proposed framework, grounded in complex fuzzy theory and Hamacher 
aggregation—offers a novel and flexible alternative to existing fuzzy MADM models. It extends the 
current literature by integrating complex membership representations and advanced fusion 
techniques for sustainability-focused decisions. 

The structure of the paper is as follows: HAOs, p,զ-Rung Orthopair Fuzzy Sets (p,զ-
ℛՕFՏs), and their characteristics are covered in Section 2. In Section 3, Cp,զ-ℛՕFՏs are 
introduced with attributes, including averaging and geometric HAOs, and are examined. Section 
4 investigates the effects of changing Hamacher aggregation parameters and applies the 
suggested method to MAGDM. A comparison investigation demonstrates the new operators’ 
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advantages. Section 5 concludes with a summary of the main conclusions and recommendations 
for further study. This paper also applies the proposed HAOs to a real-world MAGDM case 
involving the evaluation of exploration and recovery robots. The results demonstrate the 
superiority of the Cp,q-ROFS-based approach over existing fuzzy models. 

2. Methodology  
 
The concept of Cp,զ-ℛՕFՏs and its basic characteristics will be covered in this section. 

  
Definition 1: [7] On 𝑋 a p,զ-ℛՕFՏs is described as: 

Е = {(𝑥, 𝑚́𝐸(𝑥), 𝑛́𝐸(𝑥)): 𝑥 ∈  X }                 (1) 

 

which satisfies the subsequent requirement: 0 ≤ 𝑚́𝐸
𝑝(𝑥) + 𝑛́𝐸

𝑞(𝑥) ≤ 1. Where  𝑚́𝐸(𝑥), 𝑛́𝐸(𝑥) ∈
[0,1]. The truth degree is represented by the symbol 𝑚́𝐸(𝑥) whereas the falsity degree is represented 
by the symbol 𝑛́𝐸(𝑥) . The notation for the p,զ-ℛՕFN is 𝑚́𝐸(𝑥), 𝑛́𝐸(𝑥), 𝑝 ≠ 𝑞. Where,  

i. 𝑚́𝐸(𝑥) ∈ [0,1] represents the truth-membership degree of element 𝑥  

ii. 𝑛́𝐸(𝑥) ∈ [0,1] represents the falsity-membership degree of element 𝑥   

iii. 𝑝, 𝑞 > 0 are the rung parameters controlling flexibility. 

Definition 2: For p,զ-ℛՕFN Ą =  𝑚́𝐸(𝑥), 𝑛́𝐸(𝑥), the score function is provided by 

𝑆́̌(Ą) = 𝑚́𝐸
𝑝(𝑥)𝑛́𝐸

𝑞(𝑥), 𝑆́̌(Ą) ∈ [˗𝟷, 𝟷]                (2) 
 
Definition Ꝫ:  For p,զ-ℛՕFN Ą =  𝑚́𝐸(𝑥), 𝑛́𝐸(𝑥), the accuracy function is provided by 

𝐻(Ą) = 𝑚́𝐸
𝑝(𝑥) + 𝑛́𝐸

𝑞(𝑥), 𝐻(Ą) ∈ [0, 𝟷]               (3) 
 

Definition 4: Consider the two p,զ-ℛՕFNs. Ą𝟷 = (𝑚́𝟷(𝑥), 𝑛́𝟷(𝑥))   and  Ą2 = (𝑚́2(𝑥), 𝑛́2(𝑥)) then 

by using the Def. (2 & 3), we have two functions: 

i. Score function: 𝑆́̌(Ą𝟷) = 𝑚́𝟷
𝑝(𝑥) + 𝑛́𝟷

𝑞(𝑥) 𝑎𝑛𝑑 𝑆́̌(Ą2) = 𝑚́2
𝑝(𝑥) + 𝑛́2

𝑞(𝑥),  

ii. Accuracy function: 𝐻(Ą𝟷) = (𝑚́𝟷
𝑝(𝑥) + 𝑛́𝟷

𝑞(𝑥) ) 𝑎𝑛𝑑  𝐻(Ą2) = (𝑚́2
𝑝(𝑥) + 𝑛́2

𝑞(𝑥)) 

If score function is defined as: 𝑆́̌(Ą2) < 𝑆́̌(Ą1) then we have  Ą2 < Ą𝟷 

If score function of Ą1 𝑎𝑛𝑑 Ą2 is defined as:  𝑆́̌(Ą2) = 𝑆́̌(Ą1) .Then we will move to the accuracy 
function and  

a) If 𝐻(Ą2) < 𝐻(Ą1) then Ą2 will be greater than Ą1. 
b) If 𝐻(Ą2) = 𝐻(Ą1) then Ą2 will be equal to Ą1. 

Definition 5: Consider a finite universal set 𝑋, a Cp,զ-ℛՕFՏ 𝐸 is defined as: 

𝐸 = {(𝑋, 𝑚́𝐸(𝑥), 𝑛́𝐸(𝑥)): 𝑥 ∈ 𝑋}                (4) 
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which satisfies the subsequent requirement: 0 ≤ 𝑚𝐸
𝑝
(𝜈̃́) + 𝑛𝐸

𝑞
(𝜈̃́) ≤ 1 and 0 ≤ 𝜑𝑚𝐸

𝑝
(𝜈̃́) + 𝜑𝑛𝐸

𝑞
(𝜈̃́) ≤

1, where  𝑚𝐸(𝜈̃́) + 𝑛𝐸(𝜈̃́) ∈ [0,1]. The symbols 𝑚́𝐸(𝜈̃́) = 𝑚𝐸(𝜈̃́). 𝑒
𝑖́̃ 2𝜋𝜑𝑚𝐸(𝜈̃́) , 𝑛́𝐸(𝜈̃́) =

𝑛𝐸(𝜈̃́). 𝑒
𝑖́̃ 2𝜋𝜑𝑛𝐸(𝜈̃́)  are symbolized by the complexed-valued truth degree and falsity degree 

respectively. The Cp,զ-ℛՕFN is given by Ą = (𝑚́𝐸 , 𝑛́𝐸) = (𝑚𝐸(𝜈̃́). 𝑒
𝑖́̃ 2𝜋𝜑𝑚𝐸(𝜈̃́) , 𝑛𝐸(𝑣́̃). 𝑒

𝑖́̃ 2𝜋𝜑𝑛𝐸(𝜈̃́)). 

Where,  

i. 𝑚́𝐸(𝑥) ∈ 𝐶 is the complex-valued truth-membership degree 

ii. 𝑛́𝐸(𝑥) ∈ 𝐶 is the complex-valued falsity-membership degree 

Definition 6: The score function of Ą = (𝑚𝐸(𝜈̃́). 𝑒
𝑖́̃ 2𝜋𝜑𝑚𝐸(𝜈̃́) , 𝑛𝐸(𝜈̃́). 𝑒

𝑖́̃ 2𝜋𝜑𝑛𝐸(𝜈̃́)) is defined as:  

𝑆́̌(Ą) =
1

4
(2 + 𝑚1

𝑝
− 𝑛1

𝑞
+ 𝜑𝑚1

𝑝
− 𝜑𝑛1

𝑞
)        (5) 

Definition 7: The accuracy function of  Ą = (𝑚𝐸(𝜈̃́). 𝑒
𝑖́̃ 2𝜋𝜑𝑚𝐸(𝜈̃́) , 𝑛𝐸(𝜈̃́). 𝑒

𝑖́̃ 2𝜋𝜑𝑛𝐸(𝜈̃́)) is defined as: 

𝐻(Ą) =
1

2
(𝑚𝐸

𝑝
+ 𝑛𝐸

𝑞
+ 𝜑𝑚𝐸

𝑝
+ 𝜑𝑛𝐸

𝑞
)         (6) 

Definition 8: let’s have two Cp,զ-ℛՕFNs 

Ą1 = (𝑚1(𝜈̃́). 𝑒
𝑖́̃ 2𝜋𝜑𝑚1(𝜈̃́) , 𝑛1(𝜈̃́). 𝑒

𝑖́̃ 2𝜋𝜑𝑛1(𝜈̃́)) 

And 

Ą2 = (𝑚2(𝜈̃́). 𝑒
𝑖́̃ 2𝜋𝜑𝑚2(𝜈̃́) , 𝑛2(𝜈̃́). 𝑒

𝑖́̃ 2𝜋𝜑𝑛2(𝜈̃́)) 

 

 then by Eq. (5) and Eq. (6). We have score and accuracy function of Ą1 and Ą2 

𝑆́̌(Ą1) =
1

4
(2 +𝑚1

𝑝
− 𝑛1

𝑞
+ 𝜑𝑚1

𝑝
− 𝜑𝑛1

𝑞
), 

𝑆́̌(Ą2) =
1

4
(2 + 𝑚2

𝑝
− 𝑛2

𝑞
+ 𝜑𝑚2

𝑝
− 𝜑𝑛2

𝑞
), 

𝐻(Ą1) =
1

2
(𝑚1

𝑝
+ 𝑛1

𝑞
+ 𝜑𝑚1

𝑝
+ 𝜑𝑛1

𝑞
) 

𝐻(Ą2) =
1

2
(𝑚2

𝑝
+ 𝑛2

𝑞
+ 𝜑𝑚2

𝑝
+ 𝜑𝑛2

𝑞
) 

i. If the score function is:  𝑆́̌(Ą2) < 𝑆́̌(Ą1) then we have  Ą2 < Ą1. 

ii.  If the score function of Ą1 𝑎𝑛𝑑 Ą2 is: 𝑆́̌(Ą2) = 𝑆́̌(Ą1) then we will move to accuracy function. 
a) If 𝐻(Ą2) < 𝐻(Ą1) then Ą2 will be greater than Ą1. 
b) If 𝐻(Ą2) = 𝐻(Ą1) then Ą2 = Ą1. 

Here, we have two Cp,q-ROFNs Ą1 = (0.7𝑒𝜄2𝜋(0.76), 0.69𝑒𝜄2𝜋(0.76)) and Ą2 =

(0.75𝑒𝜄2𝜋(0.80), 0.74𝑒𝜄2𝜋(0.79)),from Eq. (5) and p =3.0 q = 4.0 

 𝑆́̌(Ą1) =
1

4
(2 + 0.73 − 0.694 + 0.773 − 0.764) =

1

4
(2 + .24) = 0.5 
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 𝑆́̌(Ą2) =
1

4
(2 + 0.753 − 0.744 + 0.803 − 0.794) =

1

4
(2 + .30) = 0.5 

Consequently,  S(Ą2) =  S(Ą1). Next, we'll apply Eq. (6) so that 

𝐻(Ą1) =
1

2
(0.73 − 0.694 + 0.773 − 0.764) =

1

2
(0.239) = 0.119 

𝐻(Ą2) =
1

2
(0.753 − 0.744 + 0.803 − 0.794) =

1

2
(0.244) = 0.122 

Consequently, 𝐻(Ą2) >  𝐻(Ą1) 𝑡ℎ𝑒𝑛 Ą2 > Ą1. 

3. Results  
3.1 Hamacher operators for Complex p,q-rung orthopair fuzzy sets 

Hamacher operations [17] superiority for CIFNs, CPFNs and CFNs over those in Cp,զ-ℛՕF 
environments is highlighted in this section. The Hamacher t-norm and t-conorm are used to introduce 
HAOs [16]. 

Definition 9: Consider a pair Ą = (𝑚Ą 𝑒
𝑖2𝜋𝜛𝑚Ą , 𝑛Ą𝑒

𝑖2𝜋𝜛𝑛Ą  ) and  𝐵 = (𝑚𝐵 𝑒
𝑖2𝜋𝜛𝑚𝐵 , 𝑛𝐵𝑒

𝑖2𝜋𝜛𝑛𝐵  ) 

and for 𝜆 > 0.  The fuzzy Hamacher operations for Cp,զ-ℛՕs are: 

 

1. Ą⨁𝐵 =

(

 
 
 
 
 
 
 
 
 

√
𝑚
Ą
𝑝
+𝑚𝐵

𝑝
−𝑚

Ą
𝑝
𝑚𝐵
𝑝
−(1−𝛾)𝑚

Ą
𝑝
𝑚𝐵 
𝑝

𝟷−(𝟷−𝛾)𝑚
Ą
𝑝
𝑚𝐵
𝑝  

𝑝
 𝑒

𝑖2𝜋

(

  
 
√

𝜛
𝑚
Ą
𝑝
+
𝜛
𝑚𝐵
𝑝
−
𝜛
𝑚
Ą
𝑝𝜛

𝑚𝐵
𝑝
−(1−𝛾)𝜛

𝑚
Ą
𝑝𝜛

𝑚𝐵
𝑝

𝟷−(𝟷−𝛾)𝜛
𝑚
Ą
𝑝𝜛

𝑚𝐵
𝑝

𝑝

)

  
 

𝑛Ą𝑛𝐵

√𝛾+(𝟷−𝛾)(𝑛Ą
𝑞
+𝑛𝐵

𝑞
−𝑛

Ą
𝑞
𝑛𝐵
𝑞
)

𝑞   𝑒

𝑖2𝜋

(

 
 
 
 
 

𝜛
𝑛
Ą
𝑞𝜛

𝑛𝐵
𝑞

√𝛾+(𝟷−𝛾)(𝜛
𝑛
Ą
𝑞
+
𝜛
𝑛𝐵
𝑞
−
𝜛
𝑛
Ą
𝑞𝜛

𝑛𝐵
𝑞)

𝑞

)

 
 
 
 
 

)

 
 
 
 
 
 
 
 
 

, 𝛾 > 0 

2. Ą⨂𝐵 =

(

 
 
 
 
 
 
 
 
 
 
 

𝑚Ą𝑚𝐵

√𝛾+(𝟷−𝛾)(𝑚Ą
𝑝
+𝑚𝐵

𝑝
−𝑚

Ą
𝑝
𝑚𝐵
𝑝
)

𝑝   𝑒

𝑖2𝜋

(

 
 
 
 
 

𝜛
𝑚Ą
𝑝𝜛

𝑚𝐵
𝑝

√𝛾+(𝟷−𝛾)(𝜛
𝑚
Ą
𝑝
+
𝜛
𝑚𝐵
𝑝
−
𝜛
𝑚
Ą
𝑝𝜛

𝑚𝐵
𝑝)

𝑝

)

 
 
 
 
 

√
𝑛
Ą
𝑞
+𝑛𝐵

𝑞
−𝑛

Ą
𝑞
𝑛𝐵
𝑞
−(𝟷−𝛾)𝑛

Ą
𝑞
𝑛𝐵 
𝑞

𝟷−(𝟷−𝛾)𝑛
Ą
𝑞
𝑛𝐵
𝑞  

𝑞
 𝑒

𝑖2𝜋

(

  
 
√

𝜛
𝑛
Ą
𝑞
+
𝜛
𝑛𝐵
𝑞
−
𝜛
𝑛
Ą
𝑞𝜛

𝑛𝐵
𝑞
−(𝟷−𝛾)𝜛

𝑛
Ą
𝑞𝜛

𝑛𝐵
𝑞

𝟷−(𝟷−𝛾)𝜛
𝑛
Ą
𝑞𝜛

𝑛𝐵
𝑞

𝑞

)

  
 

)

 
 
 
 
 
 
 
 
 
 
 

, 𝛾 > 0 
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3. 𝜆Ą =

(

 
 
 
 
 
 
 
 
 
 
 
 
 

√
(𝟷+(𝛾−𝟷)𝑚Ą

𝑝
)
𝜆
−(𝟷−𝑚Ą

𝑝
)
𝜆

(𝟷+(𝛾−𝟷)𝑚Ą
𝑝
)
𝜆
+(𝛾−𝟷)(𝟷−𝑚Ą

𝑝
)
𝜆

𝑝

𝑒

𝑖2𝜋

(

 
 
 
 
 

√
  
  
  
  
  
  
  
  

(𝟷+(𝛾−𝟷)𝜛
𝑚
Ą
𝑝)

𝜆

−(𝟷−𝜛
𝑚
Ą
𝑝)

𝜆

(𝟷+(𝛾−𝟷)𝜛
𝑚
Ą
𝑝)

𝜆

+(𝛾−𝟷)(𝟷−𝜛
𝑚
Ą
𝑝)

𝜆

𝑝

)

 
 
 
 
 

√𝛾
𝑞

𝑛Ą
𝜆

√(𝟷+(𝛾−𝟷)(𝟷−𝑛Ą
𝑞
))

𝜆

+(𝛾−𝟷)(𝑛Ą
𝑞
)
2𝜆𝑞
𝑒

𝑖2𝜋

(

 
 
 
 
 
 
 

√𝛾
𝑞

𝜛𝑚Ą
𝜆

√(𝟷+(𝛾−𝟷)(𝟷−𝜛
𝑛
Ą
𝑞))

𝜆
𝑞

+(𝛾−𝟷)𝜛𝑛Ą

𝑞 2𝜆

)

 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

, 𝛾 > 0 

4. Ą𝜆 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

√𝛾
𝑝

𝑚Ą
𝜆

√(𝟷+(𝛾−𝟷)(𝟷−𝑚Ą
𝑝
))

𝜆

+(𝛾−𝟷)(𝑚Ą
𝑝
)
2𝜆𝑝
 𝑒

𝑖2𝜋

(

 
 
 
 
 
 
 

√𝛾
𝑝

𝜛𝑚Ą
𝜆

√(𝟷+(𝛾−𝟷)(𝟷−𝜛
𝑚
Ą
𝑝))

𝜆
𝑝

+(𝛾−𝟷)𝜛𝑚Ą

𝑝 2𝜆

)

 
 
 
 
 
 
 

√𝛾𝑛Ą
𝜆𝑞

√(𝟷+(𝛾−𝟷)(𝟷−𝑛Ą
𝑞
))

𝜆

+(𝛾−𝟷)(𝑛Ą
𝑞
)
2𝜆𝑞
 𝑒

𝑖2𝜋

(

 
 
 
 
 

√
  
  
  
  
  
  
  
  

(1+(𝛾−𝟷)𝜛
𝑛
Ą
𝑞)

𝜆

−(𝟷−𝜛
𝑛
Ą
𝑞)

𝜆

(𝟷+(𝛾−𝟷)𝜛
𝑛
Ą
𝑞)

𝜆

+(𝛾−𝟷)(𝟷−𝜛
𝑛
Ą
𝑞)

𝜆

𝑞

)

 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 𝛾 > 0 

To illustrate Def 9, using an example, we have pair of Ą = (0.7𝑒𝑖2𝜋(0.77), 0.69𝑒𝑖2𝜋(0.76)) and  𝐵 =

(0.75𝑒𝑖2𝜋(0.80), 0.74𝑒𝑖2𝜋(0.79)). Then by using Def. (9) where 𝑝 =  3, 𝑞 =  4 𝑎𝑛𝑑 𝜆 = 2.   

1. Ą⨁𝐵 =

(

 
 
 
 
 
 
 
 
 

√
𝑚
Ą
𝑝
+𝑚𝐵

𝑝
−𝑚

Ą
𝑝
𝑚𝐵
𝑝
−(𝟷−𝛾)𝑚

Ą
𝑝
𝑚𝐵 
𝑝

𝟷−(𝟷−𝛾)𝑚
Ą
𝑝
𝑚𝐵
𝑝  

𝑝
 𝑒

𝑖2𝜋

(

  
 
√

𝜛
𝑚
Ą
𝑝
+
𝜛
𝑚𝐵
𝑝
−
𝜛
𝑚
Ą
𝑝𝜛

𝑚𝐵
𝑝
−(𝟷−𝛾)𝜛

𝑚
Ą
𝑝𝜛

𝑚𝐵
𝑝

𝟷−(𝟷−𝛾)𝜛
𝑚
Ą
𝑝𝜛

𝑚𝐵
𝑝

𝑝

)

  
 

𝑛Ą𝑛𝐵

√𝛾+(𝟷−𝛾)(𝑛Ą
𝑞
+𝑛𝐵

𝑞
−𝑛

Ą
𝑞
𝑛𝐵
𝑞
)

𝑞   𝑒

𝑖2𝜋

(

 
 
 
 
 

𝜛
𝑛
Ą
𝑞𝜛

𝑛𝐵
𝑞

√𝛾+(𝟷−𝛾)(𝜛
𝑛
Ą
𝑞
+
𝜛
𝑛𝐵
𝑞
−
𝜛
𝑛
Ą
𝑞𝜛

𝑛𝐵
𝑞)

𝑞

)

 
 
 
 
 

)
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=

(

 
 
 
 
 √

0.73 + 0.753 − 0.73 × 0.753 − (𝟷 − 2) × 0.73 × 0.753

𝟷 − (𝟷 − 2) × 0.73 × 0.753
3

𝑒

𝑖2𝜋( √
0.773+0.803−0.773×0.803−(𝟷−2)×0.773×0.803

𝟷−(𝟷−2)×0.773×0.803
3

)

0.69 × 0.74

√2 + (𝟷 − 2)(0.694 + 0.744 − 0.694 × 0.744)
4

  𝑒
𝑖2𝜋(

0.76×0.79

√2+(1−2)(0.764+0.794−0.764×0.794)
4 )

)

 
 
 
 
 

 

=

(

  
 
√0.764
1.144

3

𝑒
𝑖2𝜋( √

0.968
1.244

3
)

0.51

√1.54
4   𝑒

𝑖2𝜋(
0.6

√2.56
4 )

)

  
 

 

 

= (
0.874𝑒𝑖2𝜋(0.92)

  0.13𝑒𝑖2𝜋(0.47)
) 

2. Ą⨂𝐵 =

(

 
 
 
 
 
 
 
 
 
 
 

𝑚Ą𝑚𝐵

√𝛾 + (𝟷 − 𝛾) (𝑚Ą
𝑝
+𝑚𝐵

𝑝
−𝑚Ą

𝑝
𝑚𝐵
𝑝
)

𝑝
  𝑒

𝑖2𝜋

(

 
 
 𝜛

𝑚Ą
𝑝𝜛

𝑚𝐵
𝑝

√𝛾+(𝟷−𝛾)(𝜛
𝑚
Ą
𝑝
+
𝜛
𝑚𝐵
𝑝
−
𝜛
𝑚
Ą
𝑝𝜛

𝑚𝐵
𝑝)

𝑝

)

 
 
 

√
𝑛Ą
𝑞
+ 𝑛𝐵

𝑞
− 𝑛Ą

𝑞
𝑛𝐵
𝑞
− (𝟷 − 𝛾)𝑛Ą

𝑞
𝑛𝐵 
𝑞

𝟷 − (𝟷 − 𝛾)𝑛Ą
𝑞
𝑛𝐵
𝑞  

𝑞

 𝑒

𝑖2𝜋

(

 
 
√

𝜛
𝑛
Ą
𝑞
+
𝜛
𝑛𝐵
𝑞
−
𝜛
𝑛
Ą
𝑞𝜛

𝑛𝐵
𝑞
−(𝟷−𝛾)𝜛

𝑛
Ą
𝑞𝜛

𝑛𝐵
𝑞

𝟷−(𝟷−𝛾)𝜛
𝑛
Ą
𝑞𝜛

𝑛𝐵
𝑞

𝑞

)

 
 

)

 
 
 
 
 
 
 
 
 
 
 

 

=

(

 
 
 
 
 
 
 
 

0.7 × 0.75

√2 + (1 − 2)(0.73 + 0.753 − 0.73 × 0.753)
3

 

 𝑒
𝑖2𝜋(

0.77×0.80

√2+(1−2)(0.773+0.803−0.773×0.803)
3 )

√
(0.694 + 0.744 − 0.694 × 0.744) − (1 − 2) × 0.694 × 0.744

1 − (1 − 2) × 0.694 × 0.744
 

4

 𝑒

𝑖2𝜋( √
0.764+0.794−0.764×0.794−(1−2)×0.764×0.794

1−(1−2)×0.764×0.794
4

)

)

 
 
 
 
 
 
 
 

 

= (
0.53

1.113
𝑒
𝑖2𝜋(

0.616
1.081), √

0.53

1.06

4

𝑒
𝑖2𝜋( √

0.72
1.13

4
)
) 

 

= (
0.47𝑒𝑖2𝜋(0.569)

  0.84𝑒𝑖2𝜋(0.89)
) 
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3. 𝜆Ą =

(

 
 
 
 
 
 
 
 
 
 
 
 
 

√
(𝟷+(𝛾−𝟷)𝑚Ą

𝑝
)
𝜆
−(𝟷−𝑚Ą

𝑝
)
𝜆

(𝟷+(𝛾−𝟷)𝑚Ą
𝑝
)
𝜆
+(𝛾−𝟷)(𝟷−𝑚Ą

𝑝
)
𝜆

𝑝

𝑒

𝑖2𝜋

(

 
 
 
 
 

√
  
  
  
  
  
  
  
  

(𝟷+(𝛾−𝟷)𝜛
𝑚
Ą
𝑝)

𝜆

−(𝟷−𝜛
𝑚
Ą
𝑝)

𝜆

(𝟷+(𝛾−𝟷)𝜛
𝑚
Ą
𝑝)

𝜆

+(𝛾−𝟷)(𝟷−𝜛
𝑚
Ą
𝑝)

𝜆

𝑝

)

 
 
 
 
 

√𝛾
𝑞

𝑛Ą
𝜆

√(𝟷+(𝛾−𝟷)(𝟷−𝑛Ą
𝑞
))

𝜆

+(𝛾−𝟷)(𝑛Ą
𝑞
)
2𝜆𝑞
𝑒

𝑖2𝜋

(

 
 
 
 
 
 
 

√𝛾
𝑞

𝜛𝑚Ą
𝜆

√(𝟷+(𝛾−𝟷)(𝟷−𝜛
𝑛
Ą
𝑞))

𝜆
𝑞

+(𝛾−𝟷)𝜛𝑛Ą

𝑞 2𝜆

)

 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

=

(

 
 
 
 
 
 √

(1 + (2 − 1)0.73)2 − (1 − 0.73)2

(1 + (2 − 1)0.73)2 + (2 − 1)(1 − 0.73)2
3

𝑒
𝑖2𝜋( √

(1+(2−1)0.773)2−(1−0.773)2

(1+(2−1)0.773)2+(2−1)(1−0.773)2
3

)

√2
4

× 0.694

√(1 + (2 − 1)(1 − 0.694))
2
+ (2 − 1)(0.694)4

4
𝑒

𝑖2𝜋

(

 √2
4

×0.764

√(1+(2−1)(1−0.764))
2
+(2−1)(0.764)4

4

)

 

)

 
 
 
 
 
 

 

= (√
0.96

2.12

3

𝑒
𝑖2𝜋( √

1.826
2.416

3
)
,
0.57

√3.5
4 𝑒

𝑖2𝜋(
0.69

√1.79
4 )

) 

 

= (
0.917𝑒𝑖2𝜋(0.91)

  0.42𝑒𝑖2𝜋(0.6)
) 



International Journal of Sustainable Development Goals 

Volume 1, (2025) 144-183 

154 
 
 

 

4. Ą𝜆 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

√𝛾
𝑝

𝑚Ą
𝜆

√(𝟷+(𝛾−𝟷)(𝟷−𝑚Ą
𝑝
))

𝜆

+(𝛾−𝟷)(𝑚Ą
𝑝
)
2𝜆𝑝
𝑒

𝑖2𝜋

(

 
 
 
 
 
 
 

√𝛾
𝑝

𝜛𝑚Ą
𝜆

√(𝟷+(𝛾−𝟷)(𝟷−𝜛
𝑚
Ą
𝑝))

𝜆
𝑝

+(𝛾−𝟷)𝜛𝑚Ą

𝑝 2𝜆

)

 
 
 
 
 
 
 

√𝛾𝑛Ą
𝜆𝑞

√(𝟷+(𝛾−𝟷)(𝟷−𝑛Ą
𝑞
))

𝜆

+(𝛾−𝟷)(𝑛Ą
𝑞
)
2𝜆𝑞
𝑒

𝑖2𝜋

(

 
 
 
 
 

√
  
  
  
  
  
  
  
  

(𝟷+(𝛾−𝟷)𝜛
𝑛
Ą
𝑞)

𝜆

−(𝟷−𝜛
𝑛
Ą
𝑞)

𝜆

(𝟷+(𝛾−𝟷)𝜛
𝑛
Ą
𝑞)

𝜆

+(𝛾−𝟷)(𝟷−𝜛
𝑛
Ą
𝑞)

𝜆

𝑞

)

 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

=

(

 
 
 
 
 
 
 √2

3
× 0.72

√(1 + (2 − 1)(1 − 0.73))
2
+ (2 − 1)(1 − 0.73)4

3
𝑒

𝑖2𝜋

(

 √2
3

×0.772

√(1+(2−1)(1−0.773))
2
+(2−1)(1−0.773)4

3

)

 

√
(1 + (2 − 1)0.694)2 − (1 − 0.694)2

(1 + (2 − 1)0.694)2 + (2 − 1)(1 − 0.694)2
4

𝑒
𝑖2𝜋( √

(1+(2−1)0.764)2−(1−0.764)2

(1+(2−1)0.764)2+(2−1)(1−0.764)2
4

)

)

 
 
 
 
 
 
 

 

= (
0.617

√2.931
3 𝑒

𝑖2𝜋(
0.74

√2.677
3 )

, √
0.96

2.12

4

𝑒
𝑖2𝜋( √

1.4
5.2

4
)
) 

 

= (
0.431𝑒𝑖2𝜋(0.53)

  0.82𝑒𝑖2𝜋(0.72)
) 

 

The Hamacher sum and product are used in the operations suggested in Def. (9) to generalize the 
Hamacher procedures already in place for CIFSs, CPFSs, and CFSs. As each pair (𝑚, 𝑛) corresponds to 
𝑝, զ ∈  𝒁+, creating a Cp,զ-ℛՕFN, they define MD, abstention, NMD, and refusal degrees without 
restrictions. Under the proposed structure, Remark 1 extends these procedures to CPFNs. 

Remark 𝟷:  If we assume 𝑝 =  3, զ =  2, then complex p,q-ROFHO are as follows: 
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1. Ą⨁𝐵 =

(

 
 
 
 
 
 
 
 
 

(
𝑚Ą
3+𝑚𝐵

3−𝑚Ą
3𝑚𝐵

3−(𝟷−𝛾)𝑚Ą
3𝑚𝐵 

3

𝟷−(𝟷−𝛾)𝑚Ą
3𝑚𝐵

3 )

1
2

 𝑒

𝑖2𝜋

(

 
 

𝜛
𝑚Ą
3+

𝜛
𝑚𝐵
3−

𝜛
𝑚Ą
3𝜛𝑚𝐵

3−(𝟷−𝛾)𝜛
𝑚Ą
3𝜛𝑚𝐵

3

𝟷−(𝟷−𝛾)𝜛
𝑚Ą
3𝜛𝑚𝐵

3

)

 
 

1
2

𝑛Ą𝑛𝐵

(𝛾+(𝟷−𝛾)(𝑛Ą
2+𝑛𝐵

2−𝑛Ą
2𝑛𝐵

2 ))

1
2

  𝑒

𝑖2𝜋

(

 
 
 
 
 
 

𝜛
𝑛Ą
2𝜛𝑛𝐵

2

(𝛾+(𝟷−𝛾)(𝜛
𝑛Ą
2+

𝜛
𝑛𝐵
2−

𝜛
𝑛Ą
2𝜛𝑛𝐵

2 ))

1
2

)

 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 

, 𝛾 > 0 

2. Ą⨂𝐵 =

(

 
 
 
 
 
 
 
 
 
 
 
 

𝑚Ą𝑚𝐵

(𝛾+(𝟷−𝛾)(𝑚Ą
3+𝑚𝐵

3−𝑚Ą
3𝑚𝐵

3 ))

1
2

  𝑒

𝑖2𝜋

(

 
 
 
 
 
 

𝜛
𝑚Ą
3𝜛𝑚𝐵

3

(𝛾+(𝟷−𝛾)(𝜛
𝑚Ą
3+

𝜛
𝑚𝐵
3−

𝜛
𝑚Ą
3𝜛𝑚𝐵

3 ))

1
2

)

 
 
 
 
 
 

(
𝑛Ą
2+𝑛𝐵

2−𝑛Ą
2𝑛𝐵

2−(1−𝛾)𝑛Ą
2𝑛𝐵 

2

1−(𝟷−𝛾)𝑛Ą
2𝑛𝐵

2 )

1
2

 𝑒

𝑖2𝜋

(

 
 

𝜛
𝑛Ą
2+

𝜛
𝑛𝐵
2−

𝜛
𝑛Ą
2𝜛𝑛𝐵

2−(𝟷−𝛾)𝜛
𝑛Ą
2𝜛𝑛𝐵

2

𝟷−(𝟷−𝛾)𝜛
𝑛Ą
2𝜛𝑛𝐵

2

)

 
 

1
2

)

 
 
 
 
 
 
 
 
 
 
 
 

, 𝛾 > 0 

3. 𝜆Ą =

(

 
 
 
 
 
 
 
 
 
 
 

(
(𝟷+(𝛾−𝟷)𝑚Ą

3)
𝜆
−(𝟷−𝑚Ą

3)
𝜆

(𝟷+(𝛾−𝟷)𝑚Ą
3)
𝜆
+(𝛾−𝟷)(𝟷−𝑚Ą

3)
𝜆)

1
2

𝑒

𝑖2𝜋

(

 
 
 
 (𝟷+(𝛾−𝟷)𝜛

𝑚Ą
3)

𝜆

−(𝟷−𝜛
𝑚Ą
3)

𝜆

(𝟷+(𝛾−𝟷)𝜛𝑚Ą
3 )

𝜆
+(𝛾−𝟷)(𝟷−𝜛𝑚Ą

3 )
𝜆

)

 
 
 
 

1
2

(𝛾)
1
2𝑛Ą

𝜆

((𝟷+(𝛾−𝟷)(𝟷−𝑛Ą
2))

𝜆

+(𝛾−𝟷)(𝑛Ą
2)
2𝜆
)

1
2

𝑒

𝑖2𝜋

(

 
 
 
 
 
 

(𝛾)
1
2𝜛𝑚Ą

𝜆

((𝟷+(𝛾−𝟷)(𝟷−𝜛𝑛Ą
2 ))

𝜆

+(𝛾−𝟷)(𝜛𝑛Ą
2 )

2𝜆
)

1
2

)

 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 

, 𝛾 > 0 
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4. Ą𝜆 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(𝛾)
1
2𝑚Ą

𝜆

((𝟷+(𝛾−𝟷)(𝟷−𝑚Ą
3))

𝜆

+(𝛾−𝟷)(𝑚Ą
3)
2𝜆
)

1
2

𝑒

𝑖2𝜋

(

 
 
 
 
 
 
 

(𝛾)
1
2𝜛𝑚Ą

𝜆

((𝟷+(𝛾−𝟷)(𝟷−𝜛
𝑚Ą
3))

𝜆

+(𝛾−𝟷)(𝜛
𝑚Ą
3)

2𝜆

)

1
2

)

 
 
 
 
 
 
 

√𝛾𝑛Ą
𝜆𝑞

((𝟷+(𝛾−𝟷)(𝟷−𝑛Ą
𝑞
))

𝜆

+(𝛾−𝟷)(𝑛Ą
𝑞
)
2𝜆
)

1
2

𝑒

𝑖2𝜋

(

 
 
 
 (𝟷+(𝛾−𝟷)𝜛

𝑛Ą
2)

𝜆

−(𝟷−𝜛
𝑛Ą
2)

𝜆

(𝟷+(𝛾−𝟷)𝜛
𝑛Ą
2)

𝜆

+(𝛾−𝟷)(𝟷−𝜛
𝑛Ą
2)

𝜆

)

 
 
 
 

1
2

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 𝛾 > 0 

3.2 Hamacher Averaging operators in Complex p,զ Rung orthopair Fuzzy Sets 
The averaging aggregation operators based on Hamacher procedures [18] form the basis of this 
section. We suggest the Cp,զ-ℛՕFHWA operator using the Hamacher operation suggested in def. (9). 
The suggested operator is validated using the induction approach and its other characteristics are 

also examined. Here, ⱳ =(ⱳ1, ⱳ2, ⱳ3…ⱳ𝑛)
Ŧ are weight vectors where ⱳ𝑖 >  𝟶 and  ∑ ⱳʝ

𝑛
1  = 𝟷. In 

indexing sets, the terms ʝ and ҟ are used, where ʝ, ҟ =  𝟷, 2, 3, …  Ɩ. 

Numerical Example:  

Consider the following three C𝑝,𝑞 -ROFNs:  

𝐴1 =< 𝜇1 = 0.7 + 0.2𝑖, 𝜈1 = 0.3 + 0.1𝑖 > 

𝐴2 =< 𝜇2 = 0.5 + 0.3𝑖, 𝜈2 = 0.4 + 0.2𝑖 > 

𝐴3 =< 𝜇3 = 0.6 + 0.1𝑖, 𝜈3 = 0.2 + 0.1𝑖 > 

 

With corresponding weights, ⱳ = (0.4,0.3,0.3), using C𝑝,𝑞 -ROFHWA operator, the aggregated 

membership degree and non-membership degree are computed as:  

𝜇𝐻𝑊𝐴 =
∑ ⱳ𝑖𝜇𝑖
3
𝑖=1

1 + ∏ (1 −ⱳ𝑖 . 𝜇𝑖)
3
𝑖=1

;  𝜈𝐻𝑊𝐴 =
∑ ⱳ𝑖𝜈𝑖
3
𝑖=1

1 + ∏ (1 −ⱳ𝑖 . 𝜈𝑖)
3
𝑖=1

  

 

Substituting the values (Operations performed on complex numbers component-wise):  

𝜇𝐻𝑊𝐴 ≈ 0.6 + 0.19𝑖, 𝜈𝐻𝑊𝐴 ≈ 0.3 + 0.14𝑖 

Thus, the aggregated result is:  
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𝐴𝐻𝑊𝐴 =< 0.6 + 0.19𝑖, 0.3 + 0.14𝑖 > 

This example demonstrates how the Cp,զ-ℛՕFHWA operator effectively integrates individual complex 
membership and non-membership values under weighted averaging using the Hamacher approach 

Definition 10: Consider Ŧ = (𝑚𝑖𝑒
𝑖2𝜋𝜛𝑚𝑖 , 𝑛𝑖𝑒

𝑖2𝜋𝜛𝑛𝑖) is a collection. Then Cp,զ-ℛՕFHWAO is map 

𝑇𝑛 ⇀ 𝑇  where Cp,զ-ℛՕHWA (Ŧ1, Ŧ2, Ŧ3…Ŧ𝑛) =
Ɩ
⨁

ʝ = 𝟷
ⱳʝŦʝ by def. 9. 

Theorem 𝟷: Let  Ŧi= (m, n) be a collection. Therefore, the form of Cp,զ-ℛՕFHWAO is, 

𝐶𝑝, զ − ℛՕ𝐹𝐻𝑊𝐴(Ŧ1, Ŧ2, Ŧ3…Ŧ𝑛) =

(

 
 
 
 
 
 
 

√
∏ (𝟷+(𝛾−𝟷)𝑚ʝ

𝑝)
ⱳʝ
−∏ (𝟷−𝑚ʝ

𝑝)
ⱳʝƖ

ʝ=𝟷
Ɩ
ʝ=𝟷

∏ (1+(𝛾−𝟷)𝑚ʝ
𝑝)
ⱳʝ
+(𝛾−𝟷)∏ (𝟷−𝑚ʝ

𝑝)
ⱳʝƖ

ʝ=𝟷
Ɩ
ʝ=𝟷

𝑝

𝑒

𝑖2𝜋 √
∏ (𝟷+(𝛾−𝟷)𝜛𝑚ʝ

𝑝)
ⱳʝ
−∏ (𝟷−𝜛𝑚ʝ

𝑝)
ⱳʝƖ

ʝ=𝟷
Ɩ
ʝ=𝟷

∏ (1+(𝛾−𝟷)𝜛𝑚ʝ
𝑝)
ⱳʝ
+(𝛾−1)∏ (𝟷−𝜛𝑚ʝ

𝑝)
ⱳʝƖ

ʝ=𝟷
Ɩ
ʝ=𝟷

𝑝

√𝛾
𝑞

∏ 𝑛ʝ

ⱳʝƖ
ʝ=𝟷

√∏ (𝟷+(𝛾−𝟷)(𝟷−𝑛ʝ
𝑞))

ⱳʝ
+(𝛾−𝟷)∏ (𝑛ʝ

𝑞)
2ⱳʝƖ

ʝ=𝟷
Ɩ
ʝ=𝟷

𝑞
𝑒

𝑖2𝜋
√𝛾
𝑞

∏ 𝜛𝑛𝑗

ⱳ𝑗Ɩ
𝑗=𝟷

√∏ (𝟷+(𝛾−𝟷)(𝟷−𝜛𝑛ʝ
𝑞))

ⱳʝ
+(𝛾−𝟷)∏ (𝜛𝑛ʝ

𝑞)
2ⱳʝƖ

ʝ=𝟷
Ɩ
ʝ=𝟷

𝑞

)

 
 
 
 
 
 
 

    (7) 

Proof: By mathematical induction method. First Ɩ =  2, then ⱳ1Ŧ1⨁ⱳ2Ŧ2 

=

(

 
 
 
 
 √

(𝟷 + (𝛾 − 𝟷)𝑚1
𝑝)ⱳ1 − (1 −𝑚1

𝑝)ⱳ1

(1 + (𝛾 − 1)𝑚1
𝑝)ⱳ1 + (𝛾 − 1)(1 − 𝑚1

𝑝)ⱳ1

𝑝

𝑒
𝑖2𝜋 √

(1+(𝛾−1)𝜛𝑚1
𝑝)
ⱳ1−(1−𝜛𝑚1

𝑝)
ⱳ1

(1+(𝛾−1)𝜛𝑚1
𝑝)
ⱳ1+(𝛾−1)(1−𝜛𝑚1

𝑝)
ⱳ1

𝑝

√𝛾
𝑞
𝑛1
ⱳ1

√(1 + (𝛾 − 1)(1 − 𝑛1
𝑞))

ⱳ1
+ (𝛾 − 1)(𝑛1

𝑞)2ⱳ1
𝑞

𝑒

𝑖2𝜋
√𝛾
𝑞

𝜛𝑛1
ⱳ1

√(1+(𝛾−1)(1−𝜛𝑛1
𝑞))

ⱳ1
+(𝛾−1)(𝜛𝑛1

𝑞)
2ⱳ1

𝑞

)

 
 
 
 
 

 

⨁

(

 
 
 
 
 √

(1 + (𝛾 − 1)𝑚2
𝑝)ⱳ2 − (1 −𝑚2

𝑝)ⱳ2

(1 + (𝛾 − 1)𝑚2
𝑝)2 + (𝛾 − 1)(1 − 𝑚2

𝑝)ⱳ2

𝑝

𝑒
𝑖2𝜋 √

(1+(𝛾−1)𝜛𝑚2
𝑝)
ⱳ2−(1−𝜛𝑚2

𝑝)
ⱳ2

(1+(𝛾−1)𝜛𝑚2
𝑝)
ⱳ2+(𝛾−1)(1−𝜛𝑚2

𝑝)
ⱳ2

𝑝

√𝛾
𝑞
𝑛2
ⱳ2

√(1 + (𝛾 − 1)(1 − 𝑛2
𝑞))

ⱳ2
+ (𝛾 − 1)(𝑛2

𝑞)2ⱳ2
𝑞

𝑒

𝑖2𝜋
√𝛾
𝑞

𝜛𝑛2
ⱳ2

√(1+(𝛾−1)(1−𝜛𝑛2
𝑞))

ⱳ2
+(𝛾−1)(𝜛𝑛2

𝑞)
2ⱳ2

𝑞

)
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ⱳ1Ŧ1⨁ⱳ2Ŧ2

=

(

 
 
 
 
 
 
 
 

√
∏ (𝟷 + (𝛾 − 𝟷)𝑚ʝ

𝑝)
ⱳʝ
−∏ (𝟷 −𝑚ʝ

𝑝)
ⱳʝ2

ʝ=1
2
ʝ=𝟷

∏ (1 + (𝛾 − 1)𝑚ʝ
𝑝)

ⱳʝ
+ (𝛾 − 1)∏ (1 − 𝑚ʝ

𝑝)
ⱳʝ2

ʝ=1
2
ʝ=1

𝑝

𝑒

𝑖2𝜋 √
∏ (𝟷+(𝛾−𝟷)𝜛𝑚ʝ

𝑝)
ⱳʝ
−∏ (𝟷−𝜛𝑚ʝ

𝑝)
ⱳʝ2

ʝ=𝟷
2
ʝ=1

∏ (1+(𝛾−1)𝜛𝑚ʝ
𝑝)

ⱳʝ
+(𝛾−1)∏ (1−𝜛𝑚ʝ

𝑝)
ⱳʝ2

ʝ=1
2
ʝ=1

𝑝

√𝛾
𝑞 ∏ 𝑛ʝ

ⱳʝ2
ʝ=1

√∏ (1 + (𝛾 − 1)(1 − 𝑛ʝ
𝑞))

ⱳʝ

+ (𝛾 − 1)∏ (𝑛ʝ
𝑞)

2ⱳʝ2
ʝ=1

2
ʝ=1

𝑞
𝑒

𝑖2𝜋
√𝛾
𝑞

∏ 𝜛𝑛ʝ

ⱳʝ2
ʝ=1

√∏ (1+(𝛾−1)(1−𝜛𝑛ʝ
𝑞))

ⱳʝ
+(𝛾−1)∏ (𝜛𝑛ʝ

𝑞)
2ⱳʝ2

ʝ=1
2
ʝ=1

𝑞

)

 
 
 
 
 
 
 
 

 

Now suppose this result 𝑙 =  ҟ then  

𝐶𝑝, զ − ℛՕ𝐹𝐻𝑊𝐴(Ŧ1, Ŧ2, Ŧ3…Ŧ𝑘)

=

(

 
 
 
 
 
 
 
 

√
∏ (𝟷 + (𝛾 − 1)𝑚ʝ

𝑝)
ⱳʝ
−∏ (𝟷 −𝑚ʝ

𝑝)
ⱳʝҟ 

ʝ=𝟷
ҟ 
ʝ=𝟷

∏ (𝟷 + (𝛾 − 𝟷)𝑚ʝ
𝑝)

ⱳʝ
+ (𝛾 − 𝟷)∏ (𝟷 −𝑚ʝ

𝑝)
ⱳʝҟ 

ʝ=𝟷
ҟ 
ʝ=𝟷

𝑝

𝑒

𝑖2𝜋 √
∏ (𝟷+(𝛾−𝟷)𝜛𝑚ʝ

𝑝)
ⱳʝ
−∏ (𝟷−𝜛𝑚ʝ

𝑝)
ⱳʝҟ 

ʝ=𝟷
ҟ 
ʝ=𝟷

∏ (1+(𝛾−1)𝜛𝑚ʝ
𝑝)

ⱳʝ
+(𝛾−1)∏ (1−𝜛𝑚ʝ

𝑝)
ⱳʝҟ 

ʝ=1
ҟ 
ʝ=1

𝑝

√𝛾
𝑞 ∏ 𝑛ʝ

ⱳʝҟ 
ʝ=𝟷

√∏ (𝟷 + (𝛾 − 𝟷)(𝟷 − 𝑛ʝ
𝑞))

ⱳʝ

+ (𝛾 − 𝟷)∏ (𝑛ʝ
𝑞)

2ⱳʝҟ 
ʝ=𝟷

ҟ 
ʝ=𝟷

𝑞
𝑒

𝑖2𝜋
√𝛾
𝑞

∏ 𝜛𝑛ʝ

ⱳʝҟ 
ʝ=𝟷

√∏ (𝟷+(𝛾−𝟷)(𝟷−𝜛𝑛ʝ
𝑞))

ⱳʝ
+(𝛾−𝟷)∏ (𝜛𝑛ʝ

𝑞)
2ⱳʝҟ 

ʝ=𝟷
ҟ 
ʝ=𝟷

𝑞

)

 
 
 
 
 
 
 
 

 

Now Ɩ =  ҟ +  𝟷 

 Cp,զ-ℛՕFHWA  (Ŧ𝟷, Ŧ2, Ŧ3…Ŧҟ , Ŧҟ +𝟷) = Cp,զ-ℛՕFHWA  (Ŧ𝟷, Ŧ2, Ŧ3…Ŧҟ )⨁Ŧҟ +𝟷 

=

(

 
 
 
 
 
 
 

√
∏ (1+(𝛾−1)𝑚ʝ

𝑝)
ⱳʝ
−∏ (1−𝑚ʝ

𝑝)
ⱳʝҟ 

ʝ=1
ҟ 
ʝ=1

∏ (1+(𝛾−1)𝑚ʝ
𝑝)
ⱳʝ
+(𝛾−1)∏ (1−𝑚ʝ

𝑝)
ⱳʝҟ 

ʝ=1
ҟ 
ʝ=1

𝑝

𝑒

𝑖2𝜋 √
∏ (1+(𝛾−1)𝜛𝑚𝑗

𝑝)
ⱳ𝑗

−∏ (1−𝜛𝑚𝑗
𝑝)
ⱳ𝑗ҟ 

𝑗=1
ҟ 
𝑗=1

∏ (1+(𝛾−1)𝜛𝑚𝑗
𝑝)
ⱳ𝑗

+(𝛾−1)∏ (1−𝜛𝑚𝑗
𝑝)
ⱳ𝑗ҟ 

𝑗=1
ҟ 
𝑗=1

𝑝

√𝛾
𝑞

∏ 𝑛ʝ

ⱳʝҟ 
ʝ=1

√∏ (1+(𝛾−1)(1−𝑛ʝ
𝑞))

ⱳʝ
+(𝛾−1)∏ (𝑛ʝ

𝑞)
2ⱳʝҟ 

ʝ=1
ҟ 
ʝ=1

𝑞
𝑒

𝑖2𝜋
√𝛾
𝑞

∏ 𝜛𝑛ʝ

ⱳʝҟ 
ʝ=1

√∏ (1+(𝛾−1)(1−𝜛𝑛ʝ
𝑞))

ⱳʝ
+(𝛾−1)∏ (𝜛𝑛ʝ

𝑞)
2ⱳʝҟ 

ʝ=1
ҟ 
ʝ=1

𝑞

)

 
 
 
 
 
 
 

 

⨁

(

 
 
 
 
 √

(1 + (𝛾 − 1)𝑚ҟ +1
𝑝)ⱳҟ +1 − (1 −𝑚ҟ +1

𝑝)ⱳҟ +1

(1 + (𝛾 − 1)𝑚ҟ +1
𝑝)ⱳҟ +1 + (𝛾 − 1)(1 − 𝑚ҟ +1

𝑝)ⱳҟ +1

𝑝

𝑒
𝑖2𝜋 √

(1+(𝛾−1)𝜛𝑚ҟ +1
𝑝)
ⱳҟ +1−(1−𝜛𝑚ҟ +1

𝑝)
ⱳҟ +1

(1+(𝛾−1)𝜛𝑚ҟ +1
𝑝)
ⱳҟ +1+(𝛾−1)(1−𝜛𝑚ҟ +1

𝑞)
ⱳҟ +1

𝑝

√𝛾
𝑞
𝑛
ҟ +1

ⱳҟ +1

√(1 + (𝛾 − 1)(1 − 𝑛ҟ +1
𝑞))

ⱳҟ +1
+ (𝛾 − 1)(𝑛ҟ +1

𝑞)2ⱳҟ +1
𝑞

𝑒

𝑖2𝜋
√𝛾
𝑞

𝜛𝑛ҟ +1
ⱳҟ +1

√(1+(𝛾−1)(1−𝜛𝑛ҟ +1
𝑞))

ⱳҟ +1
+(𝛾−1)(𝜛𝑛ҟ +1

𝑞)
2ⱳҟ +1

𝑞

)
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Cp,զ-ℛՕFHWA(Ŧ1, Ŧ2, Ŧ3…Ŧ𝑘+1) =

(

 
 
 
 
 
 
 

√
∏ (1+(𝛾−1)𝑚ʝ

𝑝)
ⱳʝ
−∏ (1−𝑚ʝ

𝑝)
ⱳʝҟ +1

ʝ=1
ҟ +1
ʝ=1

∏ (1+(𝛾−1)𝑚ʝ
𝑝)
ⱳʝ
+(𝛾−1)∏ (1−𝑚ʝ

𝑝)
ⱳʝҟ +1

ʝ=1
ҟ +1
ʝ=1

𝑝

𝑒

𝑖2𝜋 √
∏ (1+(𝛾−1)𝜛𝑚ʝ

𝑝)
ⱳʝ
−∏ (1−𝜛𝑚ʝ

𝑝)
ⱳʝҟ +1

ʝ=1
ҟ +1
ʝ=1

∏ (1+(𝛾−1)𝜛𝑚ʝ
𝑝)
ⱳʝ
+(𝛾−1)∏ (1−𝜛𝑚ʝ

𝑝)
ⱳʝҟ +1

ʝ=1
ҟ +1
ʝ=1

𝑝

√𝛾
𝑞

∏ 𝑛ʝ

ⱳʝҟ +1
ʝ=1

√∏ (1+(𝛾−1)(1−𝑛ʝ
𝑞))

ⱳʝ
+(𝛾−1)∏ (𝑛ʝ

𝑞)
2ⱳʝҟ +1

ʝ=1
ҟ +1
ʝ=1

𝑞
𝑒

𝑖2𝜋
√𝛾
𝑞

∏ 𝜛𝑛ʝ

ⱳʝҟ +1
ʝ=1

√∏ (1+(𝛾−1)(1−𝜛𝑛ʝ
𝑞))

ⱳʝ
+(𝛾−1)∏ (𝜛𝑛ʝ

𝑞)
2ⱳʝҟ +1

ʝ=1
ҟ +1
ʝ=1

𝑞

)

 
 
 
 
 
 
 

 

The result is valid for all values of Ɩ and for Ɩ =  ҟ +  1.  

In the following Theorem, we now list several fundamental characteristics of the suggested Cp,զ-
ℛՕFHWA operator. 

Theorem 2: The following properties are satisfied by the Hamacher aggregation operator of Cp,զ-
ℛՕFNs 

i. (Idempotency) If Ŧʝ = Ŧ = (𝑚𝑖𝑒
𝑖2𝜋𝜛𝑚𝑖 , 𝑛𝑖𝑒

𝑖2𝜋𝜛𝑛𝑖) = (𝑚𝑒𝑖2𝜋𝜛𝑚 , 𝑛𝑒𝑖2𝜋𝜛𝑛)  ∀ ʝ = 1,2,3… Ɩ. 

Then Cp,զ-ℛՕFHWA (Ŧ1, Ŧ2, Ŧ3…Ŧ𝑛) = Ŧ. 

ii. (Boundedness) If Ŧ− = (min
ʝ
𝑚ʝ , max

ʝ
𝑛ʝ) and Ŧ+ = (min

ʝ
𝑚ʝ , max

ʝ
𝑛ʝ). Then 

Ŧ− ≤ Cp,զ-ℛՕFHWA (Ŧ1, Ŧ2, Ŧ3…Ŧ𝑛) ≤ Ŧ+. 
iii. (Monotonically) Let Ŧʝ and 𝑃ʝ be two Cp,զ-ℛՕFNs such that Ŧʝ ≤ 𝑃ʝ∀ʝ.Then Cp,զ-ℛՕFHWA 

(Ŧ1, Ŧ2, Ŧ3…Ŧ𝑛) ≤ Cp,զ-ℛՕFHWA (𝑃1, 𝑃2, 𝑃3…𝑃𝑛) 

This is demonstrable in an analogous way. Cp,զ-ℛՕFn is the sole one that is weighed by the Cp,զ-
ℛՕFHWA aggregation operator. There are situations in which the Cp,զ-ℛՕFN’s ordered position is 
important in MADM problems. In those cases, the idea of ordered weighted averaging operators is 
important, and the Cp,զ-ℛՕFHOWAO will be suggested as a solution. 

Definition 11: Let  Ŧ = (𝑚𝑖𝑒
𝑖2𝜋𝜛𝑚𝑖 , 𝑛𝑖𝑒

𝑖2𝜋𝜛𝑛𝑖)  is a collection. Then Cp,զ-ℛՕFHWAO is a map 𝑇𝑛 ⇀

𝑇  and Cp,զ-ℛՕFHWA (Ŧ1, Ŧ2, Ŧ3…Ŧ𝑛) =

Ɩ
⨁ⱳʝŦ𝜎(ʝ)
ʝ = 1

 where 𝜎(ʝ) is such that Ŧ𝜎(ʝ−1) ≥ Ŧ𝜎(ʝ)∀ʝ. 

Theorem 3: Let Ŧ = (𝑚𝑖𝑒
𝑖2𝜋𝜛𝑚𝑖 , 𝑛𝑖𝑒

𝑖2𝜋𝜛𝑛𝑖) = is a collection. Then form of Cp,զ-ℛՕFHWAO is defined 

as: 

 Cp,զ-ℛՕFHWA (Ŧ1, Ŧ2, Ŧ3…Ŧ𝑛) =
Ɩ
⨁

ʝ = 𝟷
ⱳʝŦ𝜎(ʝ) 
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=

(

 
 
 
 
 
 
 

√
∏ (1+(𝛾−1)𝑚𝜎(ʝ)

𝑝)
ⱳʝ
−∏ (1−𝑚𝜎(ʝ)

𝑝)
ⱳʝƖ

ʝ=1
Ɩ
ʝ=1

∏ (1+(𝛾−1)𝑚𝜎(ʝ)
𝑝)
ⱳʝ
+(𝛾−1)∏ (1−𝑚𝜎(ʝ)

𝑝)
ⱳʝƖ

ʝ=1
Ɩ
ʝ=1

𝑝

𝑒

𝑖2𝜋 √
∏ (1+(𝛾−1)𝜛𝑚𝜎(ʝ)

𝑝)
ⱳʝ
−∏ (1−𝜛𝑚𝜎(ʝ)

𝑝)
ⱳʝƖ

ʝ=1
Ɩ
ʝ=1

∏ (1+(𝛾−1)𝜛𝑚𝜎(ʝ)
𝑝)
ⱳʝ
+(𝛾−1)∏ (1−𝜛𝑚𝜎(ʝ)

𝑝)
ⱳʝƖ

ʝ=1
Ɩ
ʝ=1

𝑝

√𝛾
𝑞

∏ 𝑛
𝜎(ʝ)

ⱳʝƖ
ʝ=1

√∏ (1+(𝛾−1)(1−𝑛𝜎(ʝ)
𝑞))

ⱳʝ
+(𝛾−1)∏ (𝑛𝜎(ʝ)

𝑞)
2ⱳʝƖ

ʝ=1
Ɩ
ʝ=1

𝑞
𝑒

𝑖2𝜋
√𝛾
𝑞

∏ 𝜛𝑛𝜎(ʝ)

ⱳʝƖ
ʝ=1

√∏ (1+(𝛾−1)(1−𝜛𝑛𝜎(ʝ)
𝑞))

ⱳʝ
+(𝛾−1)∏ (𝜛𝑛𝜎(ʝ)

𝑞)
2ⱳʝƖ

ʝ=1
Ɩ
ʝ=1

𝑞

)

 
 
 
 
 
 
 

   (8) 

 

Remark 2: The Cp,զ-ℛՕFHOWAO described in Eq. (8) satisfies Theorem 2 requirements for 
idempotency, monotonicity, and boundedness. Whereas the Cp,զ-ℛՕFHOWA operator Eq. (7) 
directly weights ordered Cp,զ -rung orthopair fuzzy arguments, the Cp,զ-ℛՕFHWA operator (Eq. 8) 
weighs them. To close this gap, we suggest a hybrid operator. 

Definition 12: Let Ŧ = (𝑚𝑖𝑒
𝑖2𝜋𝜛𝑚𝑖 , 𝑛𝑖𝑒

𝑖2𝜋𝜛𝑛𝑖) be a collection. So, Cp,զ-ℛՕFHHAO is a map 𝑇𝑛 ⇀ 𝑇  

such that 

Cp,զ-ℛՕFHHA (Ŧ1, Ŧ2, Ŧ3…Ŧ𝑛) =
Ɩ
⨁
ʝ = 1

ⱳʝŦ̇𝜎(ʝ) 

Where Ŧ̇𝜎(ʝ) is the ʝth largest of the TSFN Ŧ̇ʝ = |𝜔ʝŦʝ with 𝜔ʝ as the weight vector of Cp,զ-ℛՕF 

arguments Ŧʝ where 𝜔ʝ ∈ [𝟶, 𝟷] and ∑ 𝜔ʝ
𝑛
1  = 𝟷 and Ɩ is the balancing coefficient. 

Theorem 4:  Let Ŧ = (𝑚𝑖𝑒
𝑖2𝜋𝜛𝑚𝑖 , 𝑛𝑖𝑒

𝑖2𝜋𝜛𝑛𝑖) be a collection. The form of Cp,զ-ℛՕFHHAO is: 

Cp,զ-ℛՕFHHA(Ŧ1, Ŧ2, Ŧ3…Ŧ𝑛) =

(

 
 
 
 
 
 
 
 

√
∏ (1+(𝛾−1)𝑚̇𝜎(ʝ)

𝑝)
ⱳʝ
−∏ (1−𝑚̇𝜎(ʝ)

𝑝)
ⱳʝƖ

ʝ=1
Ɩ
ʝ=1

∏ (1+(𝛾−1)𝑚̇𝜎(ʝ)
𝑝)
ⱳʝ
+(𝛾−1)∏ (1−𝑚̇𝜎(ʝ)

𝑝)
ⱳʝƖ

ʝ=1
Ɩ
ʝ=1

𝑝

𝑒

𝑖2𝜋

√
  
  
  
  
  

∏ (1+(𝛾−1)𝜛𝑚̇𝜎(ʝ)
𝑝)

ⱳʝ
−∏ (1−𝜛𝑚̇𝜎(ʝ)

𝑝)

ⱳʝ
Ɩ
ʝ=1

Ɩ
ʝ=1

∏ (1+(𝛾−1)𝜛𝑚̇𝜎(ʝ)
𝑝)

ⱳʝ
+(𝛾−1)∏ (1−𝜛𝑚̇𝜎(ʝ)

𝑝)

ⱳʝ
Ɩ
ʝ=1

Ɩ
ʝ=1

𝑝

√𝛾
𝑞

∏ 𝑛̇
𝜎(ʝ)

𝑤ʝƖ
ʝ=1

√∏ (1+(𝛾−1)(1−𝑛̇𝜎(ʝ)
𝑞))

𝑤ʝ
+(𝛾−1)∏ (𝑛̇𝜎(ʝ)

,𝑞)
2𝑤ʝƖ

ʝ=1
Ɩ
ʝ=1

𝑞
𝑒

𝑖2𝜋
√𝛾
𝑞

∏ 𝜛𝑛̇𝜎(ʝ)

𝑤ʝƖ
ʝ=1

√∏ (1+(𝛾−1)(1−𝜛𝑛̇𝜎(ʝ)
𝑞))

𝑤ʝ
+(𝛾−1)∏ (𝜛𝑛̇𝜎(ʝ)

𝑞)
2𝑤ʝƖ

ʝ=1
Ɩ
ʝ=1

𝑞

)

 
 
 
 
 
 
 
 

  

                (9) 

Remark 3: The Eq. (9) will move to Cp,զ-ℛՕFHWAO if we are taking ⱳʝ = (
1

Ɩ
,
1

Ɩ
,
1

Ɩ
…

1

Ɩ
)
𝑇

 while it moves 

to Cp,զ-ℛՕFHOWAO if we are taking 𝜔ʝ = (
1

Ɩ
,
1

Ɩ
,
1

Ɩ
…

1

Ɩ
)
𝑇
. 

3.3 Complex p,զ-Rung Orthopair Fuzzy Hamacher Geometric Operators 
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In this section, HOs serve as the foundation for geometric aggregation operators. In Def. (9), The Cp,զ-
ℛՕFHWGO, which is based on the Hamacher operation. Validation of the proposed operator is done 
by the induction approach. Additionally, certain other characteristics of the Cp,զ-ℛՕFHWG operator 
are examined. 

Definition 13: Let Ŧ = (𝑚𝑖𝑒
𝑖2𝜋𝜛𝑚𝑖 , 𝑛𝑖𝑒

𝑖2𝜋𝜛𝑛𝑖)  be a collection. Then Cp,զ-ℛՕFHWGO with mapping 

𝑇𝑛 ⇀ 𝑇: 

Cp,զ-ℛՕFHWG(Ŧ1, Ŧ2, Ŧ3…Ŧ𝑛) =
Ɩ
⨁
ʝ = 1

ⱳʝŦʝ =

(

 
 
 
 
 
 
 
 

√𝛾
𝑝

∏ 𝑚ʝ

ⱳʝƖ
ʝ=1

√∏ (1+(𝛾−1)(1−𝑚ʝ
𝑝))

ⱳʝ
+(𝛾−1)∏ (𝑚ʝ

𝑝)
2ⱳʝƖ

ʝ=1
Ɩ
ʝ=1

𝑝
𝑒

𝑖2𝜋
√𝛾
𝑝

∏ 𝜛𝑚ʝ

ⱳʝƖ
ʝ=1

√∏ (1+(𝛾−1)(1−𝜛𝑚ʝ
𝑝))

ⱳʝ
+(𝛾−1)∏ (𝜛𝑚ʝ

𝑝)
2ⱳʝƖ

ʝ=1
Ɩ
ʝ=1

𝑝

√
∏ (1+(𝛾−1)𝑛ʝ

𝑞)
ⱳʝ
−∏ (1−𝑛ʝ

𝑞)
ⱳʝƖ

ʝ=1
Ɩ
ʝ=1

∏ (1+(𝛾−1)𝑛ʝ
𝑞)
ⱳʝ
+(𝛾−1)∏ (1−𝑛ʝ

𝑞)
ⱳʝƖ

ʝ=1
Ɩ
ʝ=1

𝑞

𝑒

𝑖2𝜋 √
∏ (1+(𝛾−1)𝜛𝑛ʝ

𝑞)
ⱳʝ
−∏ (1−𝜛𝑛ʝ

𝑞)
ⱳʝƖ

ʝ=1
Ɩ
ʝ=1

∏ (1+(𝛾−1)𝜛𝑛ʝ
𝑞)
ⱳʝ
+(𝛾−1)∏ (1−𝜛𝑛ʝ

𝑞)
ⱳʝƖ

ʝ=1
Ɩ
ʝ=1

𝑞

)

 
 
 
 
 
 
 
 

   

            (10) 

However, we now propose this as a result, using Def. 9. 

Theorem 5: Let Ŧ = (𝑚𝑖𝑒
𝑖2𝜋𝜛𝑚𝑖 , 𝑛𝑖𝑒

𝑖2𝜋𝜛𝑛𝑖)  be a collection. The form of Cp,զ-ℛՕFHWGO is  

TSFHWG(Ŧ1, Ŧ2, Ŧ3…Ŧ𝑛) =
Ɩ
⨂
ʝ = 1

Ŧʝ
ⱳʝ  

Proof: By demonstrating the outcome using mathematical induction. 

For Ɩ =  2 

ⱳ1Ŧ1⨁ⱳ2Ŧ2 = 

=

(

 
 
 
 
 
 √𝛾

𝑝
𝑛1
ⱳ1

√(1 + (𝛾 − 1)(1 − 𝑛1
𝑝))

ⱳ1
+ (𝛾 − 1)(𝑛1

𝑝)2ⱳ1
𝑝

𝑒

𝑖2𝜋
√𝛾
𝑝

𝜛𝑛1
ⱳ1

√(1+(𝛾−1)(1−𝜛𝑛1
𝑝))

ⱳ1
+(𝛾−1)(𝜛𝑛1

𝑝)
2ⱳ1

𝑝

√
(1 + (𝛾 − 1)𝑚1

𝑞)ⱳ1 − (1 −𝑚1
𝑞)ⱳ1

(1 + (𝛾 − 1)𝑚1
𝑞)ⱳ1 + (𝛾 − 1)(1 − 𝑚1

𝑞)ⱳ1

𝑞

𝑒
𝑖2𝜋 √

(1+(𝛾−1)𝜛𝑚1
𝑞)
ⱳ1−(1−𝜛𝑚1

𝑞)
ⱳ1

(1+(𝛾−1)𝜛𝑚1
𝑞)
ⱳ1+(𝛾−1)(1−𝜛𝑚1

𝑞)
ⱳ1

𝑞

)
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⨁

(

 
 
 
 
 
 √𝛾

𝑝
𝑛2
ⱳ2

√(1 + (𝛾 − 1)(1 − 𝑛2
𝑝))

ⱳ2
+ (𝛾 − 1)(𝑛2

𝑝)2ⱳ2
𝑝

𝑒

𝑖2𝜋
√𝛾
𝑝

𝜛𝑛2
ⱳ2

√(1+(𝛾−1)(1−𝜛𝑛2
𝑝))

ⱳ2
+(𝛾−1)(𝜛𝑛2

𝑝)
2ⱳ2

𝑝

√
(1 + (𝛾 − 1)𝑚2

𝑞)ⱳ2 − (1 −𝑚2
𝑞)ⱳ2

(1 + (𝛾 − 1)𝑚2
𝑞)2 + (𝛾 − 1)(1 − 𝑚2

𝑞)ⱳ2

𝑞

𝑒
𝑖2𝜋 √

(1+(𝛾−1)𝜛𝑚2
𝑞)
ⱳ2−(1−𝜛𝑚2

𝑞)
ⱳ2

(1+(𝛾−1)𝜛𝑚2
𝑞)
ⱳ2+(𝛾−1)(1−𝜛𝑚2

𝑞)
ⱳ2

𝑞

)

 
 
 
 
 
 

 

 
ⱳ1Ŧ1⨁ⱳ2Ŧ2

=

(

 
 
 
 
 
 
 
 
 

√𝛾
𝑝 ∏ 𝑚ʝ

ⱳʝ2
ʝ=1

√∏ (1 + (𝛾 − 1)(1 − 𝑚ʝ
𝑝))

ⱳʝ

+ (𝛾 − 1)∏ (𝑚ʝ
𝑝)

2ⱳʝ2
ʝ=1

2
ʝ=1

𝑝
𝑒

𝑖2𝜋
√𝛾
𝑝

∏ 𝜛𝑚ʝ

ⱳʝ2
ʝ=1

√∏ (1+(𝛾−1)(1−𝜛𝑚ʝ
𝑝))

ⱳʝ
+(𝛾−1)∏ (𝜛𝑚ʝ

𝑝)
2ⱳʝ2

ʝ=1
2
ʝ=1

𝑝

√
∏ (1 + (𝛾 − 1)𝑛ʝ

𝑞)
ⱳʝ
−∏ (1 − 𝑛ʝ

𝑞)
ⱳʝ2

ʝ=1
2
ʝ=1

∏ (1 + (𝛾 − 1)𝑛ʝ
𝑞)

ⱳʝ
+ (𝛾 − 1)∏ (1 − 𝑛ʝ

𝑞)
ⱳʝ2

ʝ=1
2
ʝ=1

𝑞

𝑒

𝑖2𝜋 √
∏ (1+(𝛾−1)𝜛𝑛ʝ

𝑞)
ⱳʝ
−∏ (1−𝜛𝑛ʝ

𝑞)
ⱳʝ2

ʝ=1
2
ʝ=1

∏ (1+(𝛾−1)𝜛𝑛ʝ
𝑞)

ⱳʝ
+(𝛾−1)∏ (1−𝜛𝑛ʝ

𝑞)
ⱳʝ2

ʝ=1
2
ʝ=1

𝑞

)

 
 
 
 
 
 
 
 
 

 

For Ɩ =  2, the outcome in Eq. (10) is valid. If it is true for ̖ Ɩ =  ҟ, then. 

 

Cp,զ-ℛՕFHWA(Ŧ1, Ŧ2, Ŧ3…Ŧ𝑘) =

(

 
 
 
 
 
 
 
 

√𝛾
𝑝

∏ 𝑚ʝ

ⱳʝҟ 
ʝ=1

√∏ (1+(𝛾−1)(1−𝑚𝑝))
ⱳʝ
+(𝛾−1)∏ (𝑚ʝ

𝑝)
2ⱳʝҟ 

ʝ=1
ҟ 
ʝ=1

𝑝
𝑒

𝑖2𝜋
√𝛾
𝑝

∏ 𝜛𝑚ʝ

ⱳʝҟ 
ʝ=1

√∏ (1+(𝛾−1)(1−𝜛𝑚ʝ
𝑝))

ⱳʝ
+(𝛾−1)∏ (𝜛𝑚ʝ

𝑝)
2ⱳʝҟ 

ʝ=1
ҟ 
ʝ=1

𝑝

√
∏ (1+(𝛾−1)𝑛ʝ

𝑞)
ⱳʝ
−∏ (1−𝑛ʝ

𝑞)
ⱳʝҟ 

ʝ=1
ҟ 
ʝ=1

∏ (1+(𝛾−1)𝑛ʝ
𝑞)
ⱳʝ
+(𝛾−1)∏ (1−𝑛ʝ

𝑞)
ⱳʝҟ 

ʝ=1
ҟ 
ʝ=1

𝑞

𝑒

𝑖2𝜋 √
∏ (1+(𝛾−1)𝜛𝑛ʝ

𝑞)
ⱳʝ
−∏ (1−𝜛𝑛ʝ

𝑞)
ⱳʝҟ 

ʝ=1
ҟ 
ʝ=1

∏ (1+(𝛾−1)𝜛𝑛ʝ
𝑞)
ⱳʝ
+(𝛾−1)∏ (1−𝜛𝑛ʝ

𝑞)
ⱳʝҟ 

ʝ=1
ҟ 
ʝ=1

𝑞

)

 
 
 
 
 
 
 
 

 

Now,  Ɩ =  ҟ +  1 

Cp,զ-ℛՕFHWG (Ŧ1, Ŧ2, Ŧ3…Ŧҟ , Ŧҟ +1)= Cp,զ-ℛՕFHWA(Ŧ1, Ŧ2, Ŧ3…Ŧҟ )⨁Ŧҟ +1 
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(

 
 
 
 
 
 
 
 
 

√𝛾
𝑝 ∏ 𝑚ʝ

ⱳʝҟ 
ʝ=1

√∏ (1 + (𝛾 − 1)(1 − 𝑚ʝ
𝑝))

ⱳʝ

+ (𝛾 − 1)∏ (𝑚ʝ
𝑝)

2ⱳʝҟ 
ʝ=1

ҟ 
ʝ=1

𝑝
𝑒

𝑖2𝜋
√𝛾
𝑝

∏ 𝜛𝑚ʝ

ⱳʝҟ 
ʝ=1

√∏ (1+(𝛾−1)(1−𝜛𝑚ʝ
𝑝))

ⱳʝ
+(𝛾−1)∏ (𝜛𝑚ʝ

𝑝)
2ⱳʝҟ 

ʝ=1
ҟ 
ʝ=1

𝑝

√
∏ (1 + (𝛾 − 1)𝑛ʝ

𝑞)
ⱳʝ
−∏ (1 − 𝑛ʝ

𝑞)
ⱳ𝑗ҟ 

ʝ=1
ҟ 
ʝ=1

∏ (1 + (𝛾 − 1)𝑛ʝ
𝑞)

ⱳʝ
+ (𝛾 − 1)∏ (1 − 𝑛ʝ

𝑞)
ⱳʝҟ 

ʝ=1
ҟ 
ʝ=1

𝑞

𝑒

𝑖2𝜋 √
∏ (1+(𝛾−1)𝜛𝑛ʝ

𝑞)
ⱳʝ
−∏ (1−𝜛𝑛ʝ

𝑞)
ⱳʝҟ 

ʝ=1
ҟ 
ʝ=1

∏ (1+(𝛾−1)𝜛𝑛ʝ
𝑞)

ⱳʝ
+(𝛾−1)∏ (1−𝜛𝑛ʝ

𝑞)
ⱳʝҟ 

ʝ=1
ҟ 
ʝ=1

𝑞

)

 
 
 
 
 
 
 
 
 

 

⨁

(

 
 
 
 
 
 
 √𝛾

𝑝
𝑚ҟ +1
ⱳҟ +1

√(1 + (𝛾 − 1)(1 − 𝑚ҟ +1
𝑝))

ⱳҟ +1
+ (𝛾 − 1)(𝑚ҟ +1

𝑝)2ⱳҟ +1
𝑝

𝑒

𝑖2𝜋
√𝛾
𝑝

𝜛𝑚ҟ +1

ⱳҟ +1

√(1+(𝛾−1)(1−𝜛𝑚ҟ +1
𝑝))

ⱳҟ +1
+(𝛾−1)(𝜛𝑚ҟ +1

𝑝)
2ⱳҟ +1

𝑝

√
(1 + (𝛾 − 1)𝑛ҟ +1

𝑞)ⱳҟ  +1 − (1 − 𝑛ҟ +1
𝑞)ⱳҟ +1

(1 + (𝛾 − 1)𝑛ҟ +1
𝑞)ⱳҟ +1 + (𝛾 − 1)(1 − 𝑛ҟ +1

𝑞)ⱳҟ +1

𝑝,𝑞

𝑒
𝑖2𝜋 √

(1+(𝛾−1)𝜛𝑛ҟ +1
𝑞)
ⱳҟ +1−(1−𝜛𝑛ҟ +1

𝑞)
ⱳҟ +1

(1+(𝛾−1)𝜛𝑛ҟ +1
𝑞)
ⱳҟ +1+(𝛾−1)(1−𝜛𝑛ҟ +1

𝑞)
ⱳҟ +1

𝑞

)

 
 
 
 
 
 
 

 

Cp,զ-ℛՕFHWG(Ŧ1, Ŧ2, Ŧ3…Ŧҟ +1) =

(

 
 
 
 
 
 
 
 

√𝛾
𝑝

∏ 𝑚ʝ

ⱳʝҟ +1
ʝ=1

√∏ (1+(𝛾−1)(1−𝑚ʝ
𝑝))

ⱳʝ
+(𝛾−1)∏ (𝑚ʝ

𝑝)
2ⱳʝҟ +1

ʝ=1
ҟ +1
ʝ=1

𝑝
𝑒

𝑖2𝜋
√𝛾
𝑝

∏ 𝜛𝑚ʝ

ⱳʝҟ +1
ʝ=1

√∏ (1+(𝛾−1)(1−𝜛𝑚ʝ
𝑝))

ⱳʝ
+(𝛾−1)∏ (𝑚𝑝)

2ⱳʝҟ +1
ʝ=1

ҟ +1
ʝ=1

𝑝

√
∏ (1+(𝛾−1)𝑛ʝ

𝑞)
ⱳʝ
−∏ (1−𝑛ʝ

𝑞)
ⱳʝҟ +1

ʝ=1
ҟ +1
ʝ=1

∏ (1+(𝛾−1)𝑛ʝ
𝑞)
ⱳʝ
+(𝛾−1)∏ (1−𝑛ʝ

𝑞)
ⱳʝҟ +1

ʝ=1
ҟ +1
ʝ=1

𝑞

𝑒

𝑖2𝜋 √
∏ (1+(𝛾−1)𝜛𝑛ʝ

𝑞)
ⱳʝ
−∏ (1−𝜛𝑛ʝ

𝑞)
ⱳʝҟ +1

ʝ=1
ҟ +1
ʝ=1

∏ (1+(𝛾−1)𝜛𝑛ʝ
𝑞)
ⱳʝ
+(𝛾−1)∏ (1−𝜛𝑛ʝ

𝑞)
ⱳʝҟ +1

ʝ=1
ҟ +1
ʝ=1

𝑞

)

 
 
 
 
 
 
 
 

 

The result is valid for all values of Ɩ and for Ɩ =  ҟ +  1. 

In this theorem, the fundamental characteristics of the proposed Cp,զ-ℛՕFHWG operator are stated. 

Theorem 6: Following are the properties of the Hamacher geometric aggregation operator of Cp,զ-
ℛՕFNs: 

i. (Idempotency) If Ŧ𝑗 = Ŧ = (𝑚𝑖𝑒
𝑖2𝜋𝜛𝑚𝑖 , 𝑛𝑖𝑒

𝑖2𝜋𝜛𝑛𝑖) = (𝑚𝑒𝑖2𝜋𝜛𝑚 , 𝑛𝑒𝑖2𝜋𝜛𝑛), ∀ 𝑗 = 1,2,3… Ɩ. 

Cp,զ-ℛՕFHWG (Ŧ1, Ŧ2, Ŧ3…Ŧ𝑛) = Ŧ. 

ii.   (Boundedness) If Ŧ− = (min
ʝ
𝑚ʝ , max

ʝ
𝑛ʝ) and Ŧ+ = (min

ʝ
𝑚ʝ , max

ʝ
𝑛ʝ). Then 

Ŧ− ≤ Cp,զ-ℛՕFHWG (Ŧ1, Ŧ2, Ŧ3…Ŧ𝑛) ≤ Ŧ+. 
iii. (Monotonically) Let Ŧʝ and 𝑃ʝ be two Cp,զ-ℛՕFNs such that Ŧʝ ≤ 𝑃ʝ∀ʝ.Then Cp,զ-ℛՕFHWG 

(Ŧ1, Ŧ2, Ŧ3…Ŧ𝑛) ≤ Cp,զ-ℛՕFHWG (𝑃1, 𝑃2, 𝑃3…𝑃𝑛). 
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This is demonstrable in an analogous way. Weighting the Cp,զ-ℛՕFN alone is done by the Cp,զ-
ℛՕFHWG aggregation operator. There are situations in which the Cp,զ-ℛՕFN’s ordered position is 
important in MADM problems. In those cases, the idea of ordered weighted averaging operators is 
important, and the Cp,զ-ℛՕFHOWGO is suggested as a solution.  

Definition 14: Let Ŧ = (𝑚𝑖𝑒
𝑖2𝜋𝜛𝑚𝑖 , 𝑛𝑖𝑒

𝑖2𝜋𝜛𝑛𝑖) be a collection. The form of Cp,զ-ℛՕFHOWGO is 

mapping  𝑇𝑛 ⇀ 𝑇 

Cp,զ-ℛՕFHOWG (Ŧ1, Ŧ2, Ŧ3…Ŧ𝑛) =
Ɩ
⨁
ʝ = 1

ⱳʝŦ𝜎(ʝ) where 𝜎(ʝ) is such that Ŧ𝜎(ʝ−1) ≥ Ŧ𝜎(ʝ)∀𝑗. 

Theorem 7: Let Ŧ = (𝑚𝑖𝑒
𝑖2𝜋𝜛𝑚𝑖 , 𝑛𝑖𝑒

𝑖2𝜋𝜛𝑛𝑖) = is a collection. Then Cp,զ-ℛՕFHOWGO with form Cp,զ-

ℛՕFHOWG (Ŧ1, Ŧ2, Ŧ3…Ŧ𝑛) =
Ɩ
⨁
ʝ = 1

ⱳʝŦ𝜎(ʝ) 

(

 
 
 
 
 
 
 
 
 

√𝛾
𝑝

∏ 𝑚
𝜎(ʝ)

ⱳʝƖ
ʝ=1

√∏ (1 + (𝛾 − 1)(1 − 𝑚𝜎(ʝ)
𝑝))

ⱳʝ
+ (𝛾 − 1)∏ (𝑚𝜎(ʝ)

𝑝)
2ⱳʝƖ

ʝ=1
Ɩ
ʝ=1

𝑝
𝑒

𝑖2𝜋
√𝛾
𝑝

∏ 𝜛𝑚𝜎(ʝ)

ⱳʝƖ
ʝ=1

√∏ (1+(𝛾−1)(1−𝜛𝑚𝜎(ʝ)
𝑝))

ⱳʝ

+(𝛾−1)∏ (𝜛𝑚𝜎(ʝ)
𝑝)

2ⱳʝƖ
ʝ=1

Ɩ
ʝ=1

𝑝

√
∏ (1 + (𝛾 − 1)𝑛𝜎(ʝ)

𝑞)
ⱳʝ
−∏ (1 − 𝑛𝜎(ʝ)

𝑞)
ⱳʝƖ

ʝ=1
Ɩ
ʝ=1

∏ (1 + (𝛾 − 1)𝑛𝜎(ʝ)
𝑞)

ⱳʝ
+ (𝛾 − 1)∏ (1 − 𝑛𝜎(ʝ)

𝑞)
ⱳʝƖ

ʝ=1
Ɩ
ʝ=1

𝑞

𝑒

𝑖2𝜋 √
∏ (1+(𝛾−1)𝜛𝑛𝜎(ʝ)

𝑞)
ⱳʝ
−∏ (1−𝜛𝑛𝜎(ʝ)

𝑞)
ⱳʝƖ

ʝ=1
Ɩ
ʝ=1

∏ (1+(𝛾−1)𝜛𝑛𝜎(ʝ)
𝑞)
ⱳʝ
+(𝛾−1)∏ (1−𝜛𝑛𝜎(ʝ)

𝑞)
ⱳʝƖ

ʝ=1
Ɩ
ʝ=1

𝑞

)

 
 
 
 
 
 
 
 
 

           (11) 

The Cp,զ-ℛՕFHWG operator weighs ordered locations in Eqs. (10) and (11), whereas the Cp,զ-
ℛՕFHOWG operator weighs arguments directly. We suggest a hybrid geometric operator as a 
solution. 

Definition 15: [19] Let Ŧ = (𝑚𝑖𝑒
𝑖2𝜋𝜛𝑚𝑖 , 𝑛𝑖𝑒

𝑖2𝜋𝜛𝑛𝑖)  be a collection. Cp,զ-ℛՕFHHG operator mapping 

𝑇𝑛 ⇀ 𝑇 ; 

Cp,զ-ℛՕFHHG  (Ŧ1, Ŧ2, Ŧ3…Ŧ𝑛) =
Ɩ
⨁
ʝ = 1

𝑤ʝŦ̇𝜎(ʝ) 

 Ŧ̇𝜎(ʝ) is jth largest of the ℛՕFN Ŧ̇ʝ = Ŧʝ
Ɩ𝜔ʝ with 𝜔ʝ is weight vector of Cp,զ-ℛՕF argument Ŧʝ and 𝜔ʝ ∈ 

[𝟶, 𝟷] and ∑ 𝜔ʝ
𝑛
1  = 𝟷and Ɩ is a balancing coefficient. 

Theorem 8: Let Ŧ = (𝑚𝑖𝑒
𝑖2𝜋𝜛𝑚𝑖 , 𝑛𝑖𝑒

𝑖2𝜋𝜛𝑛𝑖)  is a collection. The form of Cp,զ-ℛՕFHHGO is 

TSFHHG(Ŧ1, Ŧ2, Ŧ3…Ŧ𝑛) 
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(

 
 
 
 
 
 
 
 

√
∏ (1+(𝛾−1)𝑛̇𝜎(ʝ)

𝑝)
ⱳʝ
−∏ (1−𝑛̇𝜎(ʝ)

𝑝)
ⱳʝƖ

ʝ=1
Ɩ
ʝ=1

∏ (1+(𝛾−1)𝑛̇𝜎(ʝ)
𝑝)
ⱳʝ
+(𝛾−1)∏ (1−𝑛̇𝜎(ʝ)

𝑝)
ⱳʝƖ

ʝ=1
Ɩ
ʝ=1

𝑝

𝑒

𝑖2𝜋

√
  
  
  
  
  

∏ (1+(𝛾−1)𝜛𝑛̇𝜎(ʝ)
𝑝)

ⱳʝ
−∏ (1−𝜛𝑛̇𝜎(ʝ)

𝑝)

ⱳʝ
Ɩ
ʝ=1

Ɩ
ʝ=1

∏ (1+(𝛾−1)𝜛𝑛̇𝜎(ʝ)
𝑝)

ⱳʝ
+(𝛾−1)∏ (1−𝜛𝑛̇𝜎(ʝ)

𝑞)

ⱳʝ
Ɩ
ʝ=1

Ɩ
ʝ=1

𝑝

√𝛾
𝑞

∏ 𝑚̇
𝜎(ʝ)

ⱳʝƖ
ʝ=1

√∏ (1+(𝛾−1)(1−𝑚̇𝜎(ʝ)
𝑞))

ⱳʝ
+(𝛾−1)∏ (𝑚̇𝜎(ʝ)

𝑞)
2ⱳʝƖ

ʝ=1
Ɩ
ʝ=1

𝑞
𝑒

𝑖2𝜋
√𝛾
𝑞

∏ 𝜛𝑚̇𝜎(ʝ)

ⱳʝƖ
ʝ=1

√∏ (1+(𝛾−1)(1−𝜛𝑚̇𝜎(ʝ)
𝑞))

ⱳʝ
+(𝛾−1)∏ (𝜛𝑚̇𝜎(ʝ)

𝑞)
2ⱳʝƖ

ʝ=1
Ɩ
ʝ=1

𝑞

)

 
 
 
 
 
 
 
 

  

                         (12) 

3.4 Algorithm 

This section proposes an application to tackle MAGDM problems based on sophisticated p,q-ROFHO. 
We have two finite sets of alternative and attributes 𝐺 = {𝐺1, 𝐺2, 𝐺3, … , 𝐺𝑚} and Ą =
{Ą1, Ą2, Ą3, … , Ą𝑛} and decision makers Ɗ = {Ɗ1, Ɗ2, Ɗ3, … , Ɗ𝑘}. The weight vector ⱳ =
{ⱳ1, ⱳ2, ⱳ3, …ⱳ𝑛}

𝑇 is given for attributes Ą𝑖(𝑖 = 1,2,3, … 𝑛) with a condition ∑ ⱳ𝑖 =
𝑛
𝑖=1

1 ,ⱳ𝑖𝜖[0,1]. The following steps make up the method for aggregating the Cp,զ-ℛՕF information. 

Step 1: Use Eq. (13) to construct the matrix, where each entity is represented by a Cp,զ-ℛՕFN. 

Ɗ𝑠 = [Ŧ𝑖ʝ
𝑆]
𝑚×𝑛

 , 𝑖, ʝ = 𝟷, 2, …𝑚, 𝑛                  (1З) 

Step 2: Normalization of decision matrix by using Eq.14. 

Ɍ𝑠 = {
Ŧ𝑖ʝ
𝑆 𝑓𝑜𝑟 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑒 𝑡𝑦𝑝𝑒 𝑜𝑓 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

Ŧ𝑖ʝ
𝑆 𝐶  𝑓𝑜𝑟 𝑐𝑜𝑠𝑡 𝑡𝑦𝑝𝑒 𝑜𝑓 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

                   (14) 

Step 3: Examine the optimal levels of each criterion while building the optimal approach using Eq. 
(14). 

Ɍ = [

𝑟11
𝑟12
𝑟13…
𝑟1𝑛

]                     (15) 

Step 4: Using Eq. (7–12), aggregate the decision matrix with optimal approach. 

Step 5: Gather the values of the options in ascending order, then select the one that the decision-
makers believe is best. 

3.4.1 Criteria for assessing gold miners' cleaner production 

The cleaner production evaluation criteria system, which employs five criteria based on the 
distinctive features of gold mines, was put into practice in this section using the recommended 
ranking technique. To determine which of the three solutions is the best for cleaner manufacturing. 
Decision maker [20] characterizes cleaner manufacturing based on five criteria, mentioned in Table 
1.  Figure 1 represents the flow chart of Algorithm. The algorithm's steps are: 



International Journal of Sustainable Development Goals 

Volume 1, (2025) 144-183 

166 
 
 

 

Step 1: By using Eq. (13) to construct a matrix, where each entity is represented by a Cp,զ-ℛՕFNs.  

Step 2: Use Eq. (14) for normalization of decision matrix. 

Step 3: Use matrix (15) to build the optimal approach, looking at the optimal levels of each criterion. 

Step 4: The best method was used to aggregate by Eqs.7–12. 

Step 𝟧: Sort the choice values according to their order of ascending, then choose the best option 
based on the preferences of the decision-makers. 

The following are the steps in the algorithm in Figure 2:  

 

 
Fig. 2. Algorithmic Framework for Complex p,q-Rung Orthopair Fuzzy 

Hamacher Aggregation-Based MAGDM 

 

Tables 4–26, which are presented below, include numerical discussions of the information of CIFSs, 
CPFSs and Cp,զ-ℛՕFSs together with their associated results.  

Step 1: We use Eq. (13), whose every entity is a Cp,զ-ℛՕFN, to generate the matrix. The following is 
the decision matrix (Table 2): 

Step 2: It is not possible to normalize the choice matrix using Eq. (14). Therefore, Table 1 will be taken 
into consideration for computations using weight vectors. 

 ⱳ = {ⱳ1, ⱳ2, ⱳ3, …ⱳ𝑛}
𝑇. 

Step 3: Using Eq. (15), we create the optimal plan and analyze the optimal values of each criterion so 
that 
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Ɍ =

[
 
 
 
 
 
 
Level of management                                 (1.0𝑒𝜄2𝜋(1.0)0.0𝑒𝜄2𝜋(0.0))

Equipment and production method       (1.0𝑒𝜄2𝜋(1.0)0.0𝑒𝜄2𝜋(0.0))

Use of resources and energy                     (1.0𝑒𝜄2𝜋(1.0)0.0𝑒𝜄2𝜋(0.0))

Utilization of waste                                      (1.0𝑒𝜄2𝜋(1.0)0.0𝑒𝜄2𝜋(0.0))

The ecological conditions                          (1.0𝑒𝜄2𝜋(1.0)0.0𝑒𝜄2𝜋(0.0)) 
 ]

 
 
 
 
 
 

 

Step 4: Using Eq. (7), the Cp,զ-ℛՕF decision matrix with optimal method was aggregated (Table 3). 

Step 5: Compile the alternative values in ascending order, then select the option that the decision 
makers believe is best (Tables 4, 5). 

3.4.2 Practical Case Illustration and Justification 

To evaluate the practical utility of the proposed Cp,զ-ℛՕFHA operator, we consider a real-world-
inspired case involving the assessment of Cleaner Production (CP) strategies in a mid-scale gold 
mining operation. The goal is to select the most sustainable alternative from a set of proposed mining 
practices based on environmental, economic, and operational criteria. 

The decision-making committee consists of domain experts, environmental engineers, and 
sustainability officers who evaluate five CP alternatives: 

A₁: Enhanced tailings management 

A₂: Closed-loop water recycling systems 

A₃: Low-toxicity chemical substitution 

A₄: Renewable-energy-powered machinery 

A₅: Waste rock repurposing techniques 

Each alternative is assessed across five key attributes relevant to sustainability in gold mining: 

1. Reduction in Environmental Impact 
2. Cost-Efficiency 
3. Technical Feasibility 
4. Resource Optimization 
5. Regulatory Compliance 

Expert evaluations are expressed using Complex 𝑝, 𝑞-Rung Orthopair Fuzzy Numbers, allowing them 
to capture both hesitation and partial agreement (via complex-valued judgments). These evaluations 
are then aggregated using the proposed Hamacher operators. In the real-world setting of gold 
mining, CP adoption is often hindered by uncertainty in expert judgment, especially when 
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sustainability trade-offs involve conflicting priorities (e.g., cost vs. environmental performance). Our 
model offers a robust and flexible tool for mining companies and environmental regulators to 
synthesize multiple expert opinions, even when the data is imprecise or conflicting. The ability to 
process such uncertainty with complex fuzzy logic leads to more stable and well-grounded decisions. 
By using the Cp,զ-ℛՕFS framework: 

1. Experts can express more nuanced judgments. 
2. The aggregation process preserves information richness (via complex degrees). 
3. The final rankings are resilient to changes in criteria weights (as shown in the sensitivity 

analysis). 

The comparative analysis, as shown in Table 5 and Figure 3, demonstrates that the proposed model 
results in a more discriminative and stable ranking of alternatives, making it suitable for 
sustainability-driven industries like mining. 

Example 2: The details pertaining to this instance were covered previously. The algorithm's steps are: 

Step 1: The matrix is created using Eq. (13), where each entity is represented by a CPFN. The choice 
matrix is shown in Table 6 as follows: 

Step 2: Eq. (14) cannot be used to normalize the decision matrix. For computations involving weight 
vectors ⱳ = {0.3,0.3,0.4}𝑇. 

Step 3: We use Eq. (15) to create the optimal strategy and analyze the optimal levels of each criterion 
so that 

Ɍ =

[
 
 
 
 
 
 
Level of management                                 (1.0𝑒𝜄2𝜋(1.0)0.0𝑒𝜄2𝜋(0.0))

Equipment and production method       (1.0𝑒𝜄2𝜋(1.0)0.0𝑒𝜄2𝜋(0.0))

Use of resources and energy                     (1.0𝑒𝜄2𝜋(1.0)0.0𝑒𝜄2𝜋(0.0))

Utilization of waste                                      (1.0𝑒𝜄2𝜋(1.0)0.0𝑒𝜄2𝜋(0.0))

The ecological conditions                          (1.0𝑒𝜄2𝜋(1.0)0.0𝑒𝜄2𝜋(0.0)) 
 ]

 
 
 
 
 
 

 

Step 4: Eq. (7) was used to aggregate with the optimal approach (Table 7). 

Step 5: Compile the alternative values in ascending order, then select the option that the decision 
makers believe is preferable (Table 8, 9). 

Step 6: Conclusion. 

Example 3: The details pertaining to this instance were covered previously. The steps of algorithm 
are: 

Step 𝟷: Using Eq. (13), whose entities are all CIFNs, we build the matrix. The following is the decision 
matrix (Table 10): 

Step 2: It is not possible to use Eq. (14) to normalize the decision matrix. As a result, we shall take 
weight vector ⱳ = {0.3,0.3,0.4}𝑇 computations. 
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Step 3: Using Eq. (15), we create the optimal plan and analyze the optimal values of each criterion so 
that 

 

Ɍ =

[
 
 
 
 
 
 
Level of management                                 (1.0𝑒𝜄2𝜋(1.0)0.0𝑒𝜄2𝜋(0.0))

Equipment and production method       (1.0𝑒𝜄2𝜋(1.0)0.0𝑒𝜄2𝜋(0.0))

Use of resources and energy                     (1.0𝑒𝜄2𝜋(1.0)0.0𝑒𝜄2𝜋(0.0))

Utilization of waste                                      (1.0𝑒𝜄2𝜋(1.0)0.0𝑒𝜄2𝜋(0.0))

The ecological conditions                          (1.0𝑒𝜄2𝜋(1.0)0.0𝑒𝜄2𝜋(0.0)) 
 ]

 
 
 
 
 
 

 

Step 4: Using Eq. (7) (Table 11), the Cp,զ-ℛՕF decision matrix was aggregated with optimal approach. 

Step 5: Compile the alternative values in ascending order, then select the option that the decision 
makers believe is best (Tables 12, 13). 

Example 4: This example's specifics were already discussed.  

Step 𝟷: Use Eq. (13), whose every entity is a p,զ-ℛՕFN, to generate the matrix. The following is the 
matrix of the decision with Tables 𝟷4, 𝟷5. Since 𝑒0 = 1, then a matrix with each entity represented 
by a complex number. 

Step 2: Eq. (14) cannot be used to normalize the decision matrix. For weight vector calculations ⱳ =
{0.3,0.3,0.4}𝑇. 

Step 3: Equation (15) is used to design the optimal approach, and the ideal levels of each criterion 
are examined so that 

Ɍ =

[
 
 
 
 
 
 
Level of management                                 (1.0𝑒𝜄2𝜋(1.0)0.0𝑒𝜄2𝜋(0.0))

Equipment and production method       (1.0𝑒𝜄2𝜋(1.0)0.0𝑒𝜄2𝜋(0.0))

Use of resources and energy                     (1.0𝑒𝜄2𝜋(1.0)0.0𝑒𝜄2𝜋(0.0))

Utilization of waste                                      (1.0𝑒𝜄2𝜋(1.0)0.0𝑒𝜄2𝜋(0.0))

The ecological conditions                          (1.0𝑒𝜄2𝜋(1.0)0.0𝑒𝜄2𝜋(0.0)) 
 ]

 
 
 
 
 
 

 

Step 4: Using Eq. (7) (Tables 16, 17, 18), the Cp,զ-ℛՕF decision matrix was aggregated with optimal 
approach. 

Step 5: Sort the values of the options in ascending order, then select the one that the decision-makers 
believe is best. 

Example 5: The details pertaining to this instance were covered previously. The algorithm's as: 

Step 𝟷: From Eq. (13), A constructed matrix with all entities have form of PFNs and by following table 
𝟷9. 



International Journal of Sustainable Development Goals 

Volume 1, (2025) 144-183 

170 
 
 

 

Step 2: Eq. (14) cannot be used to normalize the decision matrix. For computations involving weight 
vectors ⱳ = {0.3,0.3,0.4}𝑇. 

Step 3: Using Eq. (15), we create the optimal plan and analyze the optimal values of each criterion so 
that 

Ɍ =

[
 
 
 
 
 
 
Level of management                                 (1.0𝑒𝜄2𝜋(1.0)0.0𝑒𝜄2𝜋(0.0))

Equipment and production method       (1.0𝑒𝜄2𝜋(1.0)0.0𝑒𝜄2𝜋(0.0))

Use of resources and energy                     (1.0𝑒𝜄2𝜋(1.0)0.0𝑒𝜄2𝜋(0.0))

Utilization of waste                                      (1.0𝑒𝜄2𝜋(1.0)0.0𝑒𝜄2𝜋(0.0))

The ecological conditions                          (1.0𝑒𝜄2𝜋(1.0)0.0𝑒𝜄2𝜋(0.0)) 
 ]

 
 
 
 
 
 

 

Step 4: By using Eq. (7), with optimal method to aggregate and by 20, 21, 22, 23 tables. 

Step 𝟧: Compile the alternative values in ascending order, then select best. 

Example 6: All details of this instance were already covered. The algorithm's steps are as follows: 

Step ӏ: Using Eq. (13), whose entities are all complex IFN, we build the matrix. The following is the 
decision matrix: 

Step 2: It is not possible to normalize the decision matrix using Equation (14). Therefore, 
computations involving weight vectors ⱳ = {0.3,0.3,0.4}𝑇.  

Step Ꝫ: We use Eq. (15) to create the optimal strategy and analyze the optimal levels of each criterion 
so that 

 

Ɍ =

[
 
 
 
 
 
 
Level of management                                 (1.0𝑒𝜄2𝜋(1.0)0.0𝑒𝜄2𝜋(0.0))

Equipment and production method       (1.0𝑒𝜄2𝜋(1.0)0.0𝑒𝜄2𝜋(0.0))

Use of resources and energy                     (1.0𝑒𝜄2𝜋(1.0)0.0𝑒𝜄2𝜋(0.0))

Utilization of waste                                      (1.0𝑒𝜄2𝜋(1.0)0.0𝑒𝜄2𝜋(0.0))

The ecological conditions                          (1.0𝑒𝜄2𝜋(1.0)0.0𝑒𝜄2𝜋(0.0)) 
 ]

 
 
 
 
 
 

 

 

Step 4: Using the best method, the Cp,զ-ℛՕF decision matrix was aggregated using Eq. (7) (Tables 
24, 25, 26). 

Step 5: Choose the choice that the decision-makers think is best after sorting the values of the options 
in ascending order. 

3.4.3 Comparative Evaluation 
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The proposed Complex 𝑝, 𝑞-Rung Orthopair Fuzzy Sets (Cp,զ-ℛՕFSs) offer a flexible and 
comprehensive structure for modeling complex fuzzy (CF) information often encountered in real-
world decision-making problems. Compared to conventional models such as Complex Intuitionistic 
Fuzzy Sets (CIFS) and Complex Pythagorean Fuzzy Sets (CPFS), Cp,զ-ℛՕFSs allow dynamic control of 
information bounds through tunable parameters 𝑝 and 𝑞, thus increasing their expressiveness. The 
Hamacher aggregation operators (HAOs) serve as key instruments in capturing the interrelationships 
among uncertain inputs and constructing robust operational rules. A comparative analysis has been 
conducted to demonstrate the superiority of our proposed model. To evaluate performance, we 
solved the same multi-attribute group decision-making (MAGDM) problem using several existing 
methods: Xu (2007) – Intuitionistic Fuzzy Aggregation Operator (IFAO), Huang (2014) – Intuitionistic 
Fuzzy Hamacher Aggregation Operator (IFHAO), Garg (2019) – Pythagorean Fuzzy Hamacher 
Aggregation Operator (PFHAO), Liu and Wang (2018a) – 𝑝, 𝑞 -ROF Aggregation Operator. In contrast, 
our proposed method—based on Cp,զ-ℛՕFHA and Cp,զ-ℛՕFGH operators—provides the following 
comparative advantages: Higher precision in representing expert opinions through complex-valued 
membership and non-membership degrees. Enhanced robustness to parameter variations, as 
observed in sensitivity analysis with respect to 𝑝, 𝑞 and 𝛾. Generalization ability, where our model 
reduces to existing ones (e.g., CIFS, IF, PF, and 𝑝, 𝑞 -ROFS) under specific parameter constraints. The 
results of this comparative evaluation are summarized as: Table 1: Evaluation of CP alternatives, 
Table 2: Normalized decision matrix, Table 3: Aggregated decision values using different models, 
Table 4: Calculated score values, Table 5: Final ranking of alternatives, Figure 3: Comparative 
performance of criteria under various aggregation methods. Overall, the findings confirm that the 
Cp,զ-ℛՕFS-based Hamacher aggregation framework outperforms previous methods in terms of 
ranking consistency, decision accuracy, and flexibility in managing uncertain and complex expert 
assessments. 

Table 1 

Description of assessment of CP alternatives 

notations depiction Descriptive 
 

𝙲𝟏 
 
Stages of management 

It outlines the cleaner production management level, 
including the essential elements of cleaner production rules 
and how they should be implemented. 

𝙲𝟐 Equipment and production 
method 

It displays the scope of the production process, including 
industrial equipment and extraction methods. 

𝙲𝟑 Use of resources and energy It details how much water is used for each unit of product 
and how much energy is needed overall for each unit of 
production. 

   
 

𝙲𝟒 
 
Waste optimization 

It details overall use, including rates of use of solid waste, 
wastewater, and related resources. 

   
 

𝙲𝟓 
 
The ecological conditions 

Criteria weights, greening and reclamation rates, and 
ecological governance are all included. 
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Table 2 

Normalized decision matrix 

Symbols 𝑮𝟏 𝑮𝟐 𝑮𝟑 
𝙲𝟏 (0.77𝑒𝜄2𝜋(0.52), 0.41𝑒𝜄2𝜋(0.47)) (0.87𝑒𝜄2𝜋(.52), 0.71𝑒𝜄2𝜋(0.47)) (0.92𝑒𝜄2𝜋(0.58), 0.88𝑒𝜄2𝜋(0.47)) 

    
𝙲𝟐 (0.85𝑒𝜄2𝜋(0.55), 0.74𝑒𝜄2𝜋(0.45)) (0.85𝑒𝜄2𝜋(0.55), 0.74𝑒𝜄2𝜋(0.35)) (0.92𝑒𝜄2𝜋(0.56), 0.86𝑒𝜄2𝜋(0.55)) 

    
𝙲𝟑 (0.9𝑒𝜄2𝜋(0.58), 0.75𝑒𝜄2𝜋(0.51)) (0.83𝑒𝜄2𝜋(0.51), 0.75𝑒𝜄2𝜋(0.41)) (0.9𝑒𝜄2𝜋(0.55), 0.85𝑒𝜄2𝜋(0.41)) 

    
𝙲𝟒 (0.7𝑒𝜄2𝜋(0.6)0.5𝑒𝜄2𝜋(0.54)) (0.89𝑒𝜄2𝜋(0.6)0.72𝑒𝜄2𝜋(0.21)) (0.79𝑒𝜄2𝜋(0.59)0.89𝑒𝜄2𝜋(0.29)) 

    
𝙲𝟓 (0.84𝑒𝜄2𝜋(0.45), 0.83𝑒𝜄2𝜋(0.44)) (0.86𝑒𝜄2𝜋(0.45), 0.74𝑒𝜄2𝜋(0.25)) (0.94𝑒𝜄2𝜋(0.57), 0.87𝑒𝜄2𝜋(0.45)) 

    

 

Table 3 

Cp,զ-ℛՕFNs Aggregated values 

Method Values of alternatives 
𝙲𝟏 (0.87𝑒𝜄2𝜋(0.54), 0.56𝑒𝜄2𝜋(0.39)) 

𝙲𝟐 (0.88𝑒𝜄2𝜋(0.55), 0.68𝑒𝜄2𝜋(0.38)) 

𝙲𝟑 (0.88𝑒𝜄2𝜋(0.54), 0.68𝑒𝜄2𝜋(0.37)) 

𝙲𝟒 (0.80𝑒𝜄2𝜋(0.59)0.60𝑒𝜄2𝜋(0.26)) 

𝙲𝟓 (0.89𝑒𝜄2𝜋(0.50), 0.72𝑒𝜄2𝜋(0.31)) 

 

Table 4 

Cp,զ-ℛՕFNs Score values 

Score values 

𝑺̇̌(𝙲𝟏) = 𝟎. 𝟔𝟕 

𝑺̇̌(𝙲𝟐) = 𝟎. 𝟔𝟓 

𝑺̇̌(𝙲𝟑) = 𝟎. 𝟔𝟓 

𝑺̇̌(𝙲𝟒) = 𝟎. 𝟔𝟒 

𝑺̇̌(𝙲𝟓) = 𝟎. 𝟔𝟑 
 

Table 5 

Ranking values for Cp,զ-ℛՕFNs 

Ranking values Optimal choice 
𝙲𝟏 ≥ 𝙲𝟐 ≥ 𝙲𝟑 ≥ 𝙲𝟒 ≥ 𝙲𝟓 𝐶1 

 

Table 6 represents the normalized decision matrix. Table 7 shows the aggregated value. Table 8 
shows the scores of alternatives and Table 9 represents the ranking of alternatives. 
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Table 6 

Normalized decision matrix 

Symbols 𝑮𝟏 𝑮𝟐 𝑮𝟑 
𝙲𝟏 (0.9𝑒𝜄2𝜋(0.58), 0.2𝑒𝜄2𝜋(0.51)) (0.83𝑒𝜄2𝜋(.51), 0.28𝑒𝜄2𝜋(0.41)) (0.9𝑒𝜄2𝜋(0.55), 0.11𝑒𝜄2𝜋(0.41)) 

𝙲𝟐 (0.85𝑒𝜄2𝜋(0.55), 0.3𝑒𝜄2𝜋(0.45)) (0.85𝑒𝜄2𝜋(0.55), 0.22𝑒𝜄2𝜋(0.35)) (0.92𝑒𝜄2𝜋(0.56), 0.1𝑒𝜄2𝜋(0.55)) 

𝙲𝟑 (0.84𝑒𝜄2𝜋(0.45), 0.3𝑒𝜄2𝜋(0.44)) (0.86𝑒𝜄2𝜋(0.45), 0.23𝑒𝜄2𝜋(0.25)) (0.94𝑒𝜄2𝜋(0.57), 0.08𝑒𝜄2𝜋(0.45)) 

𝙲𝟒 (0.77𝑒𝜄2𝜋(0.52)0.33𝑒𝜄2𝜋(0.47)) (0.87𝑒𝜄2𝜋(0.52)0.24𝑒𝜄2𝜋(0.47)) (0.92𝑒𝜄2𝜋(0.58)0.09𝑒𝜄2𝜋(0.47)) 

𝙲𝟓 (0.7𝑒𝜄2𝜋(0.6), 0.4𝑒𝜄2𝜋(0.54)) (0.89𝑒𝜄2𝜋(0.6), 0.2𝑒𝜄2𝜋(0.21)) (0.79𝑒𝜄2𝜋(0.59), 0.23𝑒𝜄2𝜋(0.29)) 

 

 

Table 7 

Values after aggregation 

Method Values of alternatives 
𝙲𝟏 (0.88𝑒𝜄2𝜋(0.54), 0.14𝑒𝜄2𝜋(0.37)) 

𝙲𝟐 (0.87𝑒𝜄2𝜋(0.55), 0.14𝑒𝜄2𝜋(0.38)) 

𝙲𝟑 (0.89𝑒𝜄2𝜋(0.50), 0.13𝑒𝜄2𝜋(0.31)) 

𝙲𝟒 (0.87𝑒𝜄2𝜋(0.54), 0.15𝑒𝜄2𝜋(0.39)) 

𝙲𝟓 (0.80𝑒𝜄2𝜋(0.59), 0.69𝑒𝜄2𝜋(0.26)) 

 

Table 8 

Values of Score 

Score values 

𝑺̇̌(𝙲𝟏) = 𝟎. 𝟕𝟎 

𝑺̇̌(𝙲𝟐) = 𝟎. 𝟕𝟎 

𝑺̇̌(𝙲𝟑) = 𝟎. 𝟕𝟎 

𝑺̇̌(𝙲𝟒) = 𝟎. 𝟔𝟗 

𝑺̇̌(𝙲𝟓) = 𝟎. 𝟔𝟐 
 

Table 9 

Ranking values 

Ranking values Optimal choice 
𝙲𝟏 ≥ 𝙲𝟐 ≥ 𝙲𝟑 ≥ 𝙲𝟒 ≥ 𝙲𝟓 𝙲1 → 𝟷. 0 
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Figure 3: Comparison of Criteria  

 

3.4.4 Sensitive analysis 

The following is a list of the main benefits of the examined approaches: 

i. The operators of the Cp,զ-ℛՕF Hamacher aggregation generalize existing fuzzy Hamacher 
aggregation operations. 

ii. We compare Cp,զ-ℛՕFHAOs to the complex Pythagorean and complex intuitionistic fuzzy HAOs, 
the latter of which additionally takes the refusal grade into account. 

iii. Cp,զ-ℛՕFHAOs can give the solution of issues examined, but the present HAOs are unable to 
manage the difficulties outlined in the Cp,զ-ℛՕF environment. 

iv. Cp,զ-ℛՕFHAOs yield more stable results than those seen in the study. 

The Cp,զ-ℛՕFSs basically consists of two functions: complex valued membership and non-
membership grades. The suggested strategy has benefits, that if, 

Ą = (𝑚́𝐸 , 𝑛́𝐸) = (𝑚𝐸(𝜈̃́). 𝑒
𝑖́̃ 2𝜋𝜑𝑚𝐸(𝜈̃́) , 𝑛𝐸(𝑣́̃). 𝑒

𝑖́̃ 2𝜋𝜑𝑛𝐸(𝜈̃́)) represents the Cp,զ-ℛՕFN Consequently, 

the following circumstances are met: 

0 ≤ 𝑚𝐸
𝑝
+ 𝑛𝐸

𝑞
≤ 1,0 ≤ 𝜑𝑚𝐸

𝑝
+ 𝜑𝑚𝐸

𝑞
≤ 1, 𝑝, 𝑞 ≥ 1. From the limitations of Cp,զ-ℛՕFS, it is evident 

that the specific instances of the suggested method are the CIFSs and CPFSs. Considering everything 
discussed above, it is evident that the procedures suggested in this article are more accurate and 
dependable than those now in use. Decision makers can reflect their pessimistic or optimistic attitude 
by suitably choosing among the many Hamacher weighted aggregation operators suggested in this 
work, all while keeping in mind the actual demands. Additionally, our approach differs from current 
ones in that it incorporates extra criteria that represent the preferences of decision-makers, enabling 
them to make decisions using risk tolerance. Compared to Wu and Wei (2017), Garg (2017), Liu and 
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Wang (2018a), and Darko and Liang (2020), our approach is more realistic, effective, and logical. 
Huang (2014) used IFHA operators, Xu (2007) used IFA operators, and Garg (2019) expanded on IFHA 
operators as specific instances of the suggested methods. The linguistic neutrosophic set, interval 
type-2 fuzzy set, probabilistic linguistic information, linguistic D Number, and T-spherical fuzzy set 
are only a few of the fuzzy sets for which we will investigate Hamacher aggregation strategies in the 
future. Table 10 illustrates normalized decision matrix. Table 11 shows the aggregated values by using 
the complex p,q rung orthopair fuzzy sets. Table 12 represents the score value and ranking of 
alternatives given in Table 13. Tables 14,15,19,23 represents normalized decision matrix data.  Tables 
11,16,20,24 show the aggregated values. Tables 12,17,21,25 illustrate the score values of 
alternatives. The ranking of alternatives by using the aggregation operators are presented in Tables 
18,22,26.   

Table 10 

Normalized decision matrix 

Symbols 𝑮𝟏 𝑮𝟐 𝑮𝟑 
𝙲𝟏 (0.5𝑒𝜄2𝜋(0.55), 0.3𝑒𝜄2𝜋(0.15)) (0.5𝑒𝜄2𝜋(0.55), 0.22𝑒𝜄2𝜋(0.3)) (0.2𝑒𝜄2𝜋(0.5), 0.1𝑒𝜄2𝜋(0.5)) 

𝙲𝟐 (0.53𝑒𝜄2𝜋(0.45), 0.3𝑒𝜄2𝜋(0.24)) (0.6𝑒𝜄2𝜋(0.45), 0.23𝑒𝜄2𝜋(0.2)) (0.4𝑒𝜄2𝜋(0.57), 0.08𝑒𝜄2𝜋(0.4)) 

𝙲𝟑 (0.4𝑒𝜄2𝜋(0.58), 0.2𝑒𝜄2𝜋(0.21)) (0.3𝑒𝜄2𝜋(0.51), 0.28𝑒𝜄2𝜋(0.4)) (0.7𝑒𝜄2𝜋(0.55), 0.11𝑒𝜄2𝜋(0.42)) 

𝙲𝟒 (0.54𝑒𝜄2𝜋(0.52)0.33𝑒𝜄2𝜋(0.47)) (0.7𝑒𝜄2𝜋(0.52)0.24𝑒𝜄2𝜋(0.4)) (0.2𝑒𝜄2𝜋(0.58)0.09𝑒𝜄2𝜋(0.4)) 

𝙲𝟓 (0.55𝑒𝜄2𝜋(0.6), 0.4𝑒𝜄2𝜋(0.34)) (0.8𝑒𝜄2𝜋(0.6), 0.2𝑒𝜄2𝜋(0.21)) (0.5𝑒𝜄2𝜋(0.59), 0.23𝑒𝜄2𝜋(0.29)) 

 

Table 11 

Cp,զ-ℛՕFN’s Aggregated values 

Method Values of alternatives 
𝙲𝟏 (0.42𝑒𝜄2𝜋(0.53), 0.14𝑒𝜄2𝜋(0.25)) 

𝙲𝟐 (0.51𝑒𝜄2𝜋(0.50), 0.13𝑒𝜄2𝜋(0.23)) 

𝙲𝟑 (0.55𝑒𝜄2𝜋(0.54), 0.14𝑒𝜄2𝜋(0.28)) 

𝙲𝟒 (0.53𝑒𝜄2𝜋(0.54), 0.15𝑒𝜄2𝜋(0.29)) 

𝙲𝟓 (0.64𝑒𝜄2𝜋(0.59), 0.21𝑒𝜄2𝜋(0.23)) 

 

Table 12 

Cp,զ-ℛՕFN’s Score values 

 

 

 

 

Score values 

𝑺̇̌(𝙲𝟏) = 𝟎. 𝟓𝟓 

𝑺̇̌(𝙲𝟐) = 𝟎. 𝟓𝟔 

𝑺̇̌(𝙲𝟑) = 𝟎. 𝟓𝟕 

𝑺̇̌(𝙲𝟒) = 𝟎. 𝟓𝟕 

𝑺̇̌(𝙲𝟓) = 𝟎. 𝟔𝟏 
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Table 13 

The Cp,զ-ℛՕFN’s ranking values 

Ranking values Optimal choice 
𝙲𝟓 ≥ 𝙲𝟒 ≥ 𝙲𝟑 ≥ 𝙲𝟐 ≥ 𝙲𝟏 𝙲5 → 𝟷 

 

Table 14 

Normalized decision matrix 

Symbols 𝑮𝟏 𝑮𝟐 𝑮𝟑 
𝙲𝟏 (0.85,0.74) (0.85,0.74) (0.92,0.86) 
𝙲𝟐 (0.77,0.41) (0.87,0.71) (0.92,0.88) 
𝙲𝟑 (0.9,0.75) (0.83,0.75) (0.9,0.85) 
𝙲𝟒 (0.84,0.83) (0.86,0.74) (0.94,0.87) 
𝙲𝟓 (0.7,0.5) (0.89,0.72) (0.79,0.89) 

 

Table 15 

Normalized decision matrix 

Symbols 𝑮𝟏 𝑮𝟐 𝑮𝟑 
𝙲𝟏 (0.85𝑒𝜄2𝜋(0.0), 0.74𝑒𝜄2𝜋(0.0)) (0.85𝑒𝜄2𝜋(0.0), 0.74𝑒𝜄2𝜋(0.0)) (0.92𝑒𝜄2𝜋(0.0), 0.86𝑒𝜄2𝜋(0.0)) 

𝙲𝟐 (0.77𝑒𝜄2𝜋(0.0), 0.41𝑒𝜄2𝜋(0.00)) (0.87𝑒𝜄2𝜋(0.0), 0.71𝑒𝜄2𝜋(0.0)) (0.92𝑒𝜄2𝜋(0.0), 0.88𝑒𝜄2𝜋(0.0)) 

𝙲𝟑 (0.9𝑒𝜄2𝜋(0.0), 0.75𝑒𝜄2𝜋(0.0)) (0.83𝑒𝜄2𝜋(0.0), 0.75𝑒𝜄2𝜋(0.0)) (0.9𝑒𝜄2𝜋(0.0), 0.85𝑒𝜄2𝜋(0.0)) 

𝙲𝟒 (0.84𝑒𝜄2𝜋(0.0)0.83𝑒𝜄2𝜋(0.0)) (0.86𝑒𝜄2𝜋(0.0)0.74𝑒𝜄2𝜋(0.0)) (0.94𝑒𝜄2𝜋(0.0)0.87𝑒𝜄2𝜋(0.0)) 

𝙲𝟓 (0.7𝑒𝜄2𝜋(0.0), 0.5𝑒𝜄2𝜋(0.0)) (0.89𝑒𝜄2𝜋(0.0), 0.72𝑒𝜄2𝜋(0.0)) (0.79𝑒𝜄2𝜋(0.0), 0.89𝑒𝜄2𝜋(0.0)) 

 

Table 16 

Cp,զ-ℛՕFN’s Aggregated values 

Method Values of alternatives 
𝙲𝟏 (1𝑒𝜄2𝜋(0.0), 0.68𝑒𝜄2𝜋(0.0)) 

𝙲𝟐 (0.87𝑒𝜄2𝜋(0.0), 0.56𝑒𝜄2𝜋(0.00)) 

𝙲𝟑 (0.88𝑒𝜄2𝜋(0.0), 0.68𝑒𝜄2𝜋(0.0)) 

𝙲𝟒 (0.89𝑒𝜄2𝜋(0.0)0.72𝑒𝜄2𝜋(0.0)) 

𝙲𝟓 (0.80𝑒𝜄2𝜋(0.0), 0.60𝑒𝜄2𝜋(0.0)) 

 

Table 17 

Cp,զ-ℛՕFN’s Score values 

Score values 

𝑺̇̌(𝙲𝟏) = 𝟎. 𝟔𝟗 

𝑺̇̌(𝙲𝟐) = 𝟎. 𝟔𝟒 

𝑺̇̌(𝙲𝟑) = 𝟎. 𝟔𝟏 

𝑺̇̌(𝙲𝟒) = 𝟎. 𝟔𝟎 

𝑺̇̌(𝙲𝟓) = 𝟎. 𝟓𝟗 
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Table 18 

The Cp,զ-ℛՕFN’s ranking values 

Ranking values Optimal choice 
𝙲𝟏 ≥ 𝙲𝟐 ≥ 𝙲𝟑 ≥ 𝙲𝟒 ≥ 𝙲𝟓 𝙲1 → 𝟷 

 

Table 19 

Normalized decision matrix 

Symbols 𝑮𝟏 𝑮𝟐 𝑮𝟑 
𝙲𝟏 (0.9𝑒𝜄2𝜋(0.0), 0.2𝑒𝜄2𝜋(0.0)) (0.83𝑒𝜄2𝜋(0.0), 0.28𝑒𝜄2𝜋(0.0)) (0.9𝑒𝜄2𝜋(0.0), 0.11𝑒𝜄2𝜋(0.0)) 

𝙲𝟐 (0.85𝑒𝜄2𝜋(0.0), 0.3𝑒𝜄2𝜋(0.00)) (0.85𝑒𝜄2𝜋(0.0), 0.22𝑒𝜄2𝜋(0.0)) (0.92𝑒𝜄2𝜋(0.0), 0.1𝑒𝜄2𝜋(0.0)) 

𝙲𝟑 (0.84𝑒𝜄2𝜋(0.0), 0.3𝑒𝜄2𝜋(0.0)) (0.86𝑒𝜄2𝜋(0.0), 0.23𝑒𝜄2𝜋(0.0)) (0.94𝑒𝜄2𝜋(0.0), 0.08𝑒𝜄2𝜋(0.0)) 

𝙲𝟒 (0.77𝑒𝜄2𝜋(0.0)0.33𝑒𝜄2𝜋(0.0)) (0.87𝑒𝜄2𝜋(0.0)0.24𝑒𝜄2𝜋(0.0)) (0.92𝑒𝜄2𝜋(0.0)0.09𝑒𝜄2𝜋(0.0)) 

𝙲𝟓 (0.7𝑒𝜄2𝜋(0.0), 0.4𝑒𝜄2𝜋(0.0)) (0.89𝑒𝜄2𝜋(0.0), 0.2𝑒𝜄2𝜋(0.0)) (0.79𝑒𝜄2𝜋(0.0), 0.23𝑒𝜄2𝜋(0.0)) 

 

Table 20 

Cp,զ-ℛՕFN’s Aggregated values 

Method                                  Values of alternatives 
𝙲𝟏 (0.88𝑒𝜄2𝜋(0.0), 0.14𝑒𝜄2𝜋(0.0)) 

𝙲𝟐 (0.88𝑒𝜄2𝜋(0.0), 0.14𝑒𝜄2𝜋(0.0)) 

𝙲𝟑 (0.89𝑒𝜄2𝜋(0.0), 0.13𝑒𝜄2𝜋(0.0)) 

𝙲𝟒 (0.87𝑒𝜄2𝜋(0.0)0.15𝑒𝜄2𝜋(0.0)) 

𝙲𝟓 (0.80𝑒𝜄2𝜋(0.0), 0.21𝑒𝜄2𝜋(0.0)) 

 

Table 21 

score values 

Score values 

𝑺̇̌(𝙲𝟏) = 𝟎. 𝟔𝟕 

𝑺̇̌(𝙲𝟐) = 𝟎. 𝟔𝟕 

𝑺̇̌(𝙲𝟑) = 𝟎. 𝟔𝟕 

𝑺̇̌(𝙲𝟒) = 𝟎. 𝟔𝟔 

𝑺̇̌(𝙲𝟓) = 𝟎. 𝟔𝟐 

 

Table 22 

The Cp,զ-ℛՕFN’s ranking values 

                             Ranking values                                Optimal choice 
𝙲𝟏 ≥ 𝙲𝟐 ≥ 𝙲𝟑 ≥ 𝙲𝟒 ≥ 𝙲𝟓 𝙲1 → 0.75 
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Table 23 

Normalized decision matrix 

Symbols 𝑮𝟏 𝑮𝟐 𝑮𝟑 
𝙲𝟏 (0.5𝑒𝜄2𝜋(0.0), 0.3𝑒𝜄2𝜋(0.00)) (0.5𝑒𝜄2𝜋(0.0), 0.22𝑒𝜄2𝜋(0.0)) (0.2𝑒𝜄2𝜋(0.0), 0.1𝑒𝜄2𝜋(0.0)) 

𝙲𝟐 (0.53𝑒𝜄2𝜋(0.0), 0.3𝑒𝜄2𝜋(0.0)) (0.6𝑒𝜄2𝜋(0.0), 0.23𝑒𝜄2𝜋(0.0)) (0. 4𝑒𝜄2𝜋(0.0), 0.08𝑒𝜄2𝜋(0.0)) 

𝙲𝟑 (0.54𝑒𝜄2𝜋(0.0)0.33𝑒𝜄2𝜋(0.0)) (0.7𝑒𝜄2𝜋(0.0)0.24𝑒𝜄2𝜋(0.0)) (0.2𝑒𝜄2𝜋(0.0)0.09𝑒𝜄2𝜋(0.0)) 

𝙲𝟒 (0.4𝑒𝜄2𝜋(0.0), 0.2𝑒𝜄2𝜋(0.0)) (0.3𝑒𝜄2𝜋(0.0), 0.28𝑒𝜄2𝜋(0.0)) (0.7𝑒𝜄2𝜋(0.0), 0.11𝑒𝜄2𝜋(0.0)) 

𝙲𝟓 (0.55𝑒𝜄2𝜋(0.0), 0.4𝑒𝜄2𝜋(0.0)) (0.8𝑒𝜄2𝜋(0.0), 0.2𝑒𝜄2𝜋(0.0)) (0.5𝑒𝜄2𝜋(0.0), 0.23𝑒𝜄2𝜋(0.0)) 

 

 

Table 24  

Cp,զ-ℛՕFN’s Aggregated values 

Method                                    Values of alternatives 
𝙲𝟏 (0.88𝑒𝜄2𝜋(0.0), 0.14𝑒𝜄2𝜋(0.0)) 

𝙲𝟐 (0.88𝑒𝜄2𝜋(0.0), 0.14𝑒𝜄2𝜋(0.0)) 

𝙲𝟑 (0.89𝑒𝜄2𝜋(0.0), 0.13𝑒𝜄2𝜋(0.0)) 

𝙲𝟒 (0.87𝑒𝜄2𝜋(0.0)0.15𝑒𝜄2𝜋(0.0)) 

𝙲𝟓 (0.80𝑒𝜄2𝜋(0.0), 0.21𝑒𝜄2𝜋(0.0)) 

 

Table 25 

Cp,զ-ℛՕFN’s Score values 

Score values 

𝑺̇̌(𝙲𝟏) = 𝟎. 𝟓𝟏 

𝑺̇̌(𝙲𝟐) = 𝟎. 𝟓𝟑 

𝑺̇̌(𝙲𝟑) = 𝟎. 𝟓𝟑 

𝑺̇̌(𝙲𝟒) = 𝟎. 𝟓𝟒 

𝑺̇̌(𝙲𝟓) = 𝟎. 𝟓𝟔 
 

Table 26 

The Cp,զ-ℛՕFN’s ranking values 

Ranking values Optimal choice 
𝙲𝟓 ≥ 𝙲𝟒 ≥ 𝙲𝟑 ≥ 𝙲𝟐 ≥ 𝙲𝟏 𝙲5 → 1 
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3.5 Sensitivity Analysis and Discussion 

To test the robustness of the proposed model, a sensitivity analysis was conducted by varying the 

control parameters 𝑝, 𝑞 and 𝛾. These parameters govern the flexibility and strictness of the complex 

𝑝, 𝑞 -Rung Orthopair Fuzzy environment. For each variation, the ranking of alternatives was observed 

and compared to the baseline case. The results demonstrate that while minor variations in these 

parameters do not significantly alter the top-ranked alternative, certain threshold values do cause 

changes in ranking positions, especially among middle-ranked alternatives. Notably, increasing the 

value of ppp enhances the influence of higher membership degrees, while higher \զ\զ\զ values provide 

a more conservative interpretation of membership uncertainty. 

Lessons Learned and Practical Guidelines: 

1. Lesson 1: For problems requiring more inclusive and optimistic evaluations, a lower value 

of 𝒑 is preferred, as it allows partial preferences to contribute more significantly to the 

aggregation. 

2. Lesson 2: For highly conservative or risk-averse evaluations, increasing 𝒒 improves stability 

by dampening the effect of uncertainty in the membership and non-membership values. 

3. Lesson 3: The parameter 𝜸, when used in the hybrid Hamacher operators, serves as a tuning 

knob between multiplicative and averaging effects—offering a useful balance between strict 

aggregation and neutral weighting. 

4. Rule of Thumb: If decision-makers are unsure about precise parameter values, selecting 𝒑 =
𝟐, զ = 𝟏, 𝒂𝒏𝒅 𝜸 = 𝟎. 𝟓 offers a balanced trade-off between optimistic and conservative 

decision-making. 

This analysis confirms the robustness of the proposed model and provides practical insights into 

parameter tuning, making it a valuable tool for complex decision-making problems involving 

uncertainty and subjectivity. 
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4. Conclusion 

One significant and effective way to address the conflict between environmental pollution and 
economic growth is to implement Cleaner Production (CP). Gold miners have used CP to safeguard 
the environment while extracting resources to support sustainable development. Moreover, the 
Hamacher Aggregation Operator (HAO) is a traditional type of operator used in the theory of fusion. 
Its primary characteristic is the ability to model interactions between multiple input arguments. 

To explore the properties and applicability of Hamacher-based averaging and geometric operators, 
we introduced novel Hamacher operators for Complex 𝑝, 𝑞-Rung Orthopair Fuzzy Numbers (Cp,զ-
ℛՕFNs). The importance of ordered positions and arguments was also considered in the 
development of the Hamacher Hybrid Aggregation Operators (HHAOs). We examined the scenarios 
under which the proposed operators reduce to classical fuzzy, intuitionistic, and Pythagorean 
environments, demonstrating their generalization capability. 

Using the proposed Cp,զ-ℛՕFHA operators, we developed a Multi-Attribute Group Decision-Making 
(MAGDM) algorithm to assess CP alternatives in gold mining. Through a comprehensive numerical 
study, we verified the feasibility, effectiveness, and robustness of the proposed approach. Sensitivity 
analysis further revealed the influence of parameters 𝑝, 𝑞and 𝛾 on the final rankings. Comparative 
results indicated that the proposed model outperforms existing approaches in terms of precision, 
flexibility, and robustness. 

Limitations and Future Work: 

 
While the proposed model performs well in the context of gold mining, it has certain limitations. The 
current framework is restricted to Cp,զ-ℛՕFNs and assumes known weights and input values. In 
future research, the model can be extended to more generalized fuzzy environments such as 
Pythagorean complex fuzzy sets or Neutrosophic complex fuzzy sets. Furthermore, the proposed 
aggregation operators and MAGDM methodology can be applied to diverse domains such as 
healthcare decision systems, sustainable supply chain management, and smart city planning to test 
its adaptability and scalability across sectors. 
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